Design and implementation of High performance Montgomery Modular Multiplication on Verilog HDL

International Journal of Development Research

Volume: 
08
Article ID: 
13347
5 pages
Research Article

Design and implementation of High performance Montgomery Modular Multiplication on Verilog HDL

Sukanya Anumala Setty and Sai Sravanthi Gandham

Abstract: 

The Montgomery multiplication algorithm such that the low-cost and high-performance Montgomery modular multiplier can be implemented accordingly. The proposed multiplier receives and outputs the data with binary representation and uses only one-level carry-save adder (CSA) to avoid the carry propagation at each addition operation. This CSA is also used to perform operand precomputation and format conversion from the carry save format to the binary representation, leading to a low hardware cost and short critical path delay at the expense of extra clock cycles for completing one modular multiplication. To overcome the weakness, a configurable CSA (CCSA), which could be one full-adder or two serial half-adders, is proposed to reduce the extra clock cycles for operand precomputation and format conversion by half. In addition, a mechanism that can detect and skip the unnecessary carry-save addition operations in the one-level CCSA architecture while maintaining the short critical path delay is developed.

Download PDF: