

ORIGINAL RESEARCH ARTICLE

DESIGN AND IMPLEMENTATION OF HIGH PERFORMANCE MONTGOMERY
 MODULAR MULTIPLICATION ON VERILOG HDL

1,*Sukanya Anumala Setty and 2Sai Sravanthi Gandham

1PG Scholar, Dept of ECE QIS Institute of Technology, Ongole, AP, India

2Associate Professor, QIS Institute of Technology, Ongole, AP, India

ARTICLE INFO ABSTRACT

The Montgomery multiplication algorithm such that the low-cost and high-performance
Montgomery modular multiplier can be implemented accordingly. The proposed multiplier
receives and outputs the data with binary representation and uses only one-level carry-save adder
(CSA) to avoid the carry propagation at each addition operation. This CSA is also used to perform
operand precomputation and format conversion from the carry save format to the binary
representation, leading to a low hardware cost and short critical path delay at the expense of extra
clock cycles for completing one modular multiplication. To overcome the weakness, a
configurable CSA (CCSA), which could be one full-adder or two serial half-adders, is proposed to
reduce the extra clock cycles for operand precomputation and format conversion by half. In
addition, a mechanism that can detect and skip the unnecessary carry-save addition operations in
the one-level CCSA architecture while maintaining the short critical path delay is developed.

Copyright © 2018, Sukanya Anumala Setty and Sai Sravanthi Gandham. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In many public-key cryptosystems, modular multiplication
(MM) with large integers is the most critical and time-
consuming operation. Therefore, numerous algorithms and
hardware implementation have been presented to carry out the
MM more quickly, and Montgomery’s algorithm is one of the
most well-known MM algorithms. Montgomery’s algorithm
[Montgomery, 1985] determines the quotient only depending
on the least significant digit of operands and replaces the
complicated division in conventional MM with a series of
shifting modular additions to produce S = A × B × R−1 (mod
N), where N is the k-bit modulus, R−1 is the inverse of R
modulo N, and R = 2k mod N. As a result, it can be easily
implemented into VLSI circuits to speed up the encryption /
decryption process. However, the three-operand addition in the
iteration loop of Montgomery’s algorithm as shown in step 4
of Fig. 1 requires long carry propagation for large operands in
binary representation. To solve this problem, several
approaches based on carry-save addition were proposed to
achieve a significant speedup of Montgomery MM.

*Corresponding author: Sukanya Anumala Setty,
PG Scholar, Dept of ECE QIS Institute of Technology, Ongole, AP,
India.

Based on the representation of input and output operands,
these approaches can be roughly divided into semi-carry-save
(SCS) strategy and full carry-save (FCS) strategy. In the SCS
strategy, the input and output operands (i.e., A, B, N, and S) of
the Montgomery MM are represented in binary, but
intermediate results of shifting modular additions are kept in
the carry-save format to avoid the carry propagation. However,
the format conversion from the carry-save format of the final
modular product into its binary representation is needed at the
end of each MM. This conversion can be accomplished by an
extra carry propagation adder (CPA) or reusing the carry-save
adder (CSA) architecture [Zhang, 2007] iteratively. Contrary
to the SCS strategy, the FCS strategy maintains the input and
output operands A, B, and S in the carry-save format, denoted
as (AS, AC), (BS, BC), and (SS, SC), respectively, to avoid
the format conversion, leading to fewer clock cycles for
completing a MM. Nevertheless, this strategy implies that the
number of operands will increase and that more CSAs and
registers for dealing with these operands are required.
Therefore, the FCS-based Montgomery modular multipliers
possibly have higher hardware complexity and longer critical
path than the SCS-based multipliers. Kuang et al. [2010] have
proposed an energy-efficient FCS-based multiplier (denoted as

ISSN: 2230-9926

International Journal of Development Research
Vol. 08, Issue, 06, pp.21069-21073, June, 2018

Article History:

Received 10th March, 2018
Received in revised form
24th April, 2018
Accepted 20th May, 2018
Published online 30th June, 2018

Available online at http://www.journalijdr.com

Key Words:

Carry-Save Addition, Low-Cost Architecture,
Montgomery Modular Multiplier,
Public-Key Cryptosystem.

Citation: Sukanya Anumala Setty and Sai Sravanthi Gandham. 2018. “Design and implementation of High performance Montgomery Modular
Multiplication on Verilog HDL”, International Journal of Development Research, 8, (06), 21069-21073.

 ORIGINAL RESEARCH ARTICLE OPEN ACCESS

Fig. 1. MM algorithm

FCS-MMM42 multiplier) in which the superfluous operations
of the four-to-two (two-level) CSA architecture are suppressed
to reduce the energy dissipation and enhance the throughput.
However, the FCS-MMM42 multiplier still suffers from the
high area complexity and long critical path delay. Other
techniques, such as parallelization, high-radix algorithm, and
systolic array design, can be combined with the CSA
architecture to further enhance the performance of
Montgomery multipliers. However, these techniques probably
cause a large increase in hardware complexity and
power/energy dissipation, which is undesirable for portable
systems with constrained resources. Accordingly, this paper
aims at enhancing the performance of CSA-based
Montgomery multiplier while maintaining low hardware
complexity. Instead of the FCS-based multiplier with two-level
CSA architecture in, a new SCS-based Montgomery MM
algorithm and its corresponding hardware architecture with
only one-level CSA are proposed in this paper. The proposed
algorithm and hardware architecture have the following
several advantages and novel contributions over previous
designs.

First, the one-level CSA is utilized to perform not only the
addition operations in the iteration loop of Montgomery’s
algorithm but also B + N and the format conversion, leading to
a very short critical path and lower hardware cost. However, a
lot of extra clock cycles are required to carry out B + N and the
format conversion via the one-level CSA architecture.
Therefore, the benefit of short critical path will be lessened. To
overcome the weakness, we then modify the one-level CSA
architecture to be able to perform one three-input carry-save
addition or two serial two-input carry-save additions, so that
the extra clock cycles for B + N and the format conversion can
be reduced by half. Finally, the condition and detection circuit,
which are different with that of FCS-MMM42 multiplier, are
developed to precompute quotients and skip the unnecessary
carry-save addition operations in the one-level configurable
CSA (CCSA) architecture while keeping a short critical path
delay. Therefore, the required clock cycles for completing one
MM operation can be significantly reduced.

Montgomery Multiplication

In this section, we propose a new SCS-based Montgomery
MM algorithm to reduce the critical path delay of Montgomery
multiplier. In addition, the drawback of more clock cycles for
completing one multiplication is also improved while
maintaining the advantages of short critical path delay and low
hardware complexity. A. Critical Path Delay Reduction The
critical path delay of SCS-based multiplier can be reduced by
combining the advantages of FCS-MM-2 and SCS-MM-2.
That is, we can precompute D = B + N and reuse the one-level

CSA architecture to perform B+N and the format conversion.
Fig. 7(a) and (b) shows the modified SCS-based Montgomery
multiplication (MSCS-MM) algorithm and one possible
hardware architecture, respectively. The Zero_D circuit in Fig.
7(b) is used to detect whether SC is equal to zero, which can
be accomplished using one NOR operation. The Q_L circuit
decides the qi value according to step 7 of Fig. 2(a). The carry
propagation addition operations of B + N and the format
conversion are performed by the one-level CSA architecture of
the MSCS-MM multiplier through repeatedly executing the
carry-save addition (SS, SC) = SS + SC + 0 until SC = 0. In
addition, we also precompute Ai and qi in iteration i−1 (this
will be explained more clearly in Section III-C) so that they
can be used to immediately select the desired input operand
from 0, N, B, and D through the multiplexer M3 in iteration i.
Therefore, the critical path delay of the MSCS-MM multiplier
can be reduced into TMUX4 + TFA.

Fig. 2. Modified SCS-based Montgomery multiplication

algorithm

Fig. 3. MSCS-MM multiplier

However, in addition to performing the three-input carry-save
additions [i.e., step 12 of Fig. 2(a)] k + 2 times, many extra
clock cycles are required to perform B + N and the format
conversion via the one-level CSA architecture because they
must be performed once in every MM. Furthermore, the extra
clock cycles for performing B+N and the format conversion
through repeatedly executing the carry-save addition (SS, SC)
= SS +SC +0 are dependent on the longest carry propagation
chain in SS + SC. If SS = 111…1112 and SC = 000…0012,
the one-level CSA architecture needs k clock cycles to
complete SS + SC.

21070 Sukanya Anumala Setty and Sai Sravanthi Gandham, Design and implementation of High performance Montgomery
 Modular Multiplication on Verilog HDL

Fig.4. Conventional FA circuit

Fig.5. Existing CFA circuit

That is, 3k clock cycles in the worst case are required for
completing one MM. Thus, it is critical to reduce the required
clock cycles of the MSCS-MM multiplier. B. Clock Cycle
Number Reduction To decrease the clock cycle number, a
CCSA architecture which can perform one three-input carry-
save addition or two serial two-input carry-save additions is
proposed to substitute for the one-level CSA architecture in
Fig. 2. Fig. 5 shows two cells of the one-level CSA
architecture in Fig. 3., each cell is one conventional FA which
can perform the three-input carry-save addition. Fig. 5 shows
two cells of the proposed configurable FA (CFA) circuit. If α =
1, CFA is one FA and can perform one three-input carry-save
addition (denoted as 1F_CSA). Otherwise, it is two half-adders
(HAs) and can perform two serial two-input carry-save
additions (denoted as 2H_CSA), as shown. In this case, G1 of
CFAj and G2 of CFAj+1 in Fig. 5 will act as HA1 j , and G3,
G4, and G5 of CFAj in Fig. 5 will behave as HA2 j Moreover,
we modify the 4-to-1 multiplexer M3 in Fig. into a simplified
multiplier SM3 .because one of its inputs is zero, where ∼
denotes the INVERT operation. Note that M3 has been
replacedby SM3 in the proposed one-level CCSA architecture.
According to the delay ratio shown. In addition, we also skip
the unnecessary operations in the for loop (steps 6 to 13) of
Fig. 2 to further decrease the clock cycles for completing one
Montgomery MM. The crucial computation in the for loop of
Fig. 7(a) is performing the following three-to-two carry-save
addition: (SS[i + 1], SC[i + 1]) = (SS[i] + SC[i] + x)/2 (1)
where the variable x may be 0, N, B, or D depending on the
values of Ai and qi. The computation process of (1) is shown
in Fig. 9. When Ai = 0 and qi = 0, x is equal to 0 and SS[i]0
must be equal to SC[i]0 because the sum of SS[i]0 + SC[i]0 +
x0 is equal to 0. That is, if Ai = 0 and qi = 0, then SS[i]0 =
SC[i]0. Based on this observation, we can conclude that the
sum of the carry propagation addition SS[i +1]k+1:0 + SC[i +
1]k+1:0 is equal to the sum of the carry propagation addition
SS[i]k+1:1 + SC[i]k+1:1 when Ai = qi = 0 and SS[i]0 = SC[i]0
= 0. As a result, the computation of (1) in iteration i can be

skipped if we directly right shift the outputs of one-level CSA
architecture in the (i − 1)th iteration by two bit positions (i.e.,
divided by 4) instead of one bit position (i.e., divided by 2)
when Ai = qi = 0 and SS[i]0 = SC[i]0 = 0. Accordingly, the
signal skipi+1 used in the ith iteration to indicate whether the
carry-save addition in the (i + 1)th iteration will be skipped can
be expressed as skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i + 1]0) (2)
where ∨ represents the OR operation.

Fig. 6. SCS-MM-New algorithm

Fig. 7. SCS-MM-New multiplier

Fig. 8. Skip detector Skip_D

Proposed Algorithm and Hardware Architecture: On the
bases of critical path delay reduction, clock cycle number
reduction, and quotient precomputation mentioned above, a
new SCS-based Montgomery MM algorithm (i.e., SCS-MM-
New algorithm shown in Fig.6) using one-level CCSA
architecture is proposed to significantly reduce the required
clock cycles for completing one MM.

21071 International Journal of Development Research, Vol. 08, Issue, 06, pp.21069-21073, June, 2018

Fig.9. Proposed CCSA architecture

As shown in SCS-MM-New algorithm, steps 1–5 for
producing Bˆ and Dˆ are first performed. Note that because
qi+1 and qi+2 must be generated in the ith iteration, the
iterative index i of Montgomery MM will start from −1 instead
of 0 and the corresponding initial values of qˆ and Aˆ must be
set to 0. Furthermore, the original for loop is replaced with the
while loop in SCS-MM-New algorithm to skip some
unnecessary iterations when skipi+1 = 1. In addition, the
ending number of iterations in SCS-MM-New algorithm is
changed to k + 4 instead of k + 1. This is because B is replaced
with Bˆ and thus three extra iterations for computing division
by two are necessary to ensure the correctness of Montgomery
MM. In the while loop, steps 8–12 will be performed in the
proposed one-level CCSA architecture with one 4-to-1
multiplexer. The computations of qi+1, qi+2, and skipi+1 in
step 13 and the selections of Aˆ, qˆ, and i in steps 14–20 can be
carried out in parallel with steps 8–12. Note that the right-shift
operations of steps 12 and 15 will be delayed to next clock
cycle to reduce the critical path delay of corresponding
hardware architecture. which consists of one one-level CCSA
architecture, two 4-to-1 multiplexers (i.e., M1 and M2), one
simplified multiplier SM3, one skip detector Skip_D, one zero
detector Zero_D, and six registers. Skip_D is developed to
generate skipi+1, qˆ, and Aˆ in the ith iteration. Both M4 and
M5 in Fig. 11 are 3-bit 2-to-1 multiplexers and they are much
smaller than k-bit multiplexers M1, M2, and SM3. In addition,
the area of Skip_D is negligible when compared with that of
the k-bit one-level CCSA architecture. Similar to Fig. 4, the
select signals of multiplexers M1 and M2 in Fig. 11 are
generated by the control part, which are not depicted for the
sake of simplicity. Fig. 12. Skip detector Skip_D. At the
beginning of Montgomery multiplication, the FFs stored
skipi+1, qˆ, Aˆ are first reset to 0 as shown in step 1 of SCS-
MM-New algorithm so that Dˆ = Bˆ +Nˆ can be computed via
the one-level CCSA architecture. When performing the while
loop, the skip detector Skip_D shown in Fig. 12 is used to
produce skipi+1, qˆ, and Aˆ. The Skip_D is composed of four
XOR gates, three AND gates, one NOR gate, and two 2-to-1
multiplexers.

It first generates the qi+1, qi+2, and skipi+1 signal in the ith
iteration according to (5), (7), and (8), respectively, and then
selects the correct qˆ and Aˆ according to skipi+1. At the end
of the ith iteration, qˆ, Aˆ, and skipi+1 must be stored to FFs.
In the next clock cycle of the ith iteration, SM3 outputs a
proper x according to qˆ and Aˆ generated in the ith iteration as
shown in steps 8–11, and M1 and M2 output the correct SC
and SS according to skipi+1 generated in the ith iteration. That
is, the right-shift 1-bit operations in steps 12 and 15 of SCS-
MM-New algorithm are performed together in the next clock
cycle of iteration i. In addition, M4 and M5 also select and
output the correct SC[i]2:0 and SS[i]2:0 according to skipi+1
generated in the ith iteration. Note that SC[i]2:0 and SS[i]2:0
can also be obtained from M1 and M2 but a longer delay is

required because they are 4-to-1 multiplexers. After the while
loop in steps 7–21 is completed, qˆ and Aˆ stored in FFs are
reset to 0. Then, the format conversion in steps 23 and 24 can
be performed by the SCS-MM-New multiplier similar to the
computation of Dˆ = Bˆ + Nˆ in steps 3 and 4. Finally, SS[k +
5] in binary format is outputted when SC[k + 5] is equal to 0.

Simulation and Synthesize Results

Simulation Wave Forms:

Synthesize Report

 Existing Proposed

Delay 1158.613ns 1150.550ns

Area

Delay

Conclusion

FCS-based multipliers keep up the info and yield operands of
the Montgomery MM in the convey spare organization to
escape from the arrangement change, prompting less clock
cycles however bigger territory than SCS-based multiplier. To
improve the execution of Montgomery MM while keeping up
the low equipment many-sided quality, this paper has changed
the SCS-based Montgomery increase calculation and
professional represented a minimal effort and elite
Montgomery secluded multiplier. The proposed multiplier
utilized one-level CCSA design and skirted the superfluous
convey spare addition operations to a great extent diminish the
basic way delay and required clock cycles for finishing one
MM operation. Trial comes about demonstrated that the
proposed approaches are in fact fit for upgrading the execution
of radix-2 CSA-based Montgomery multiplier while keeping
up low equipment many-sided quality.

REFERENCES

Bunimov, V., Schimmler, M. and Tolg, B. 2002. “A

complexity-effective version of Montgomery’ s algorihm,”
in Proc. Workshop Complex. Effective Designs, May.

 EXISTING PROPOSED

No. of Slices 3160 3147
No. of 4 input LUTs 6297 6272
No. of Slice Flip Flops 68 65
No. of bonded IOBs 41 39

21072 Sukanya Anumala Setty and Sai Sravanthi Gandham, Design and implementation of High performance Montgomery
 Modular Multiplication on Verilog HDL

Kim, Y. S., Kang, W. S. and Choi, J. R. 2000. “Asynchronous
implementation of 1024-bit modular processor for RSA
cryptosystem,” in Proc. 2nd IEEE Asia-Pacific Conf. ASIC,
Aug. pp. 187–190.

Koblitz, N. 1987. “Elliptic curve cryptosystems,” Math.
Comput., vol. 48, no. 177, pp. 203–209,.

McIvor, C., McLoone, M. and McCanny, J. V. 2004.
“Modified Montgomery modular multiplication and RSA
exponentiation techniques,” IEE Proc.- Comput. Digit.
Techn., vol. 151, no. 6, pp. 402–408, Nov.

Montgomery, P. L. 1985. “Modular multiplication without trial
division,” Math. Comput., vol. 44, no. 170, pp. 519–521,
Apr.

Rivest, R. L., Shamir, A. and Adleman, L. 1978. “A method
for obtaining digital signatures and public-key
cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–
126, Feb..

Miller, V. S. 1986. “Use of elliptic curves in cryptography,” in
Advances in Cryptology. Berlin, Germany: Springer-
Verlag, pp. 417–426.

Zhang, Y.Y., Li, Z., Yang, L. and Zhang, S.W. 2007. “An
efficient CSA architecture for Montgomery modular
multiplication,” Microprocessors Microsyst., vol. 31, no. 7,
pp. 456–459, Nov.

Zhengbing, H., Al Shboul, R. M. and Shirochin, V. P. 2007.
“An efficient architecture of 1024-bits cryptoprocessor for
RSA cryptosystem based on modified Montgomery’s
algorithm,” in Proc. 4th IEEE Int. Workshop Intell. Data
Acquisition Adv. Comput. Syst., Sep. pp. 643–646.

21073 International Journal of Development Research, Vol. 08, Issue, 06, pp.21069-21073, June, 2018
