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ARTICLE INFO  ABSTRACT 
 
 

The Montgomery multiplication algorithm such that the low-cost and high-performance 
Montgomery modular multiplier can be implemented accordingly. The proposed multiplier 
receives and outputs the data with binary representation and uses only one-level carry-save adder 
(CSA) to avoid the carry propagation at each addition operation. This CSA is also used to perform 
operand precomputation and format conversion from the carry save format to the binary 
representation, leading to a low hardware cost and short critical path delay at the expense of extra 
clock cycles for completing one modular multiplication. To overcome the weakness, a 
configurable CSA (CCSA), which could be one full-adder or two serial half-adders, is proposed to 
reduce the extra clock cycles for operand precomputation and format conversion by half. In 
addition, a mechanism that can detect and skip the unnecessary carry-save addition operations in 
the one-level CCSA architecture while maintaining the short critical path delay is developed.  
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INTRODUCTION 
 

In many public-key cryptosystems, modular multiplication 
(MM) with large integers is the most critical and time-
consuming operation. Therefore, numerous algorithms and 
hardware implementation have been presented to carry out the 
MM more quickly, and Montgomery’s algorithm is one of the 
most well-known MM algorithms. Montgomery’s algorithm 
[Montgomery, 1985] determines the quotient only depending 
on the least significant digit of operands and replaces the 
complicated division in conventional MM with a series of 
shifting modular additions to produce S = A × B × R−1 (mod 
N), where N is the k-bit modulus, R−1 is the inverse of R 
modulo N, and R = 2k mod N. As a result, it can be easily 
implemented into VLSI circuits to speed up the encryption / 
decryption process. However, the three-operand addition in the 
iteration loop of Montgomery’s algorithm as shown in step 4 
of Fig. 1 requires long carry propagation for large operands in 
binary representation. To solve this problem, several 
approaches based on carry-save addition were proposed to 
achieve a significant speedup of Montgomery MM.  
 

*Corresponding author: Sukanya Anumala Setty, 
PG Scholar, Dept of ECE QIS Institute of Technology, Ongole, AP, 
India. 

 
 
Based on the representation of input and output operands, 
these approaches can be roughly divided into semi-carry-save 
(SCS) strategy and full carry-save (FCS) strategy. In the SCS 
strategy, the input and output operands (i.e., A, B, N, and S) of 
the Montgomery MM are represented in binary, but 
intermediate results of shifting modular additions are kept in 
the carry-save format to avoid the carry propagation. However, 
the format conversion from the carry-save format of the final 
modular product into its binary representation is needed at the 
end of each MM. This conversion can be accomplished by an 
extra carry propagation adder (CPA) or reusing the carry-save 
adder (CSA) architecture [Zhang, 2007] iteratively. Contrary 
to the SCS strategy, the FCS strategy  maintains the input and 
output operands A, B, and S in the carry-save format, denoted 
as (AS, AC), (BS, BC), and (SS, SC), respectively, to avoid 
the format conversion, leading to fewer clock cycles for 
completing a MM. Nevertheless, this strategy implies that the 
number of operands will increase and that more CSAs and 
registers for dealing with these operands are required. 
Therefore, the FCS-based Montgomery modular multipliers 
possibly have higher hardware complexity and longer critical 
path than the SCS-based multipliers. Kuang et al. [2010] have 
proposed an energy-efficient FCS-based multiplier (denoted as  
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Fig. 1. MM algorithm 

 
FCS-MMM42 multiplier) in which the superfluous operations 
of the four-to-two (two-level) CSA architecture are suppressed 
to reduce the energy dissipation and enhance the throughput. 
However, the FCS-MMM42 multiplier still suffers from the 
high area complexity and long critical path delay. Other 
techniques, such as parallelization, high-radix algorithm, and 
systolic array design, can be combined with the CSA 
architecture to further enhance the performance of 
Montgomery multipliers. However, these techniques probably 
cause a large increase in hardware complexity and 
power/energy dissipation, which is undesirable for portable 
systems with constrained resources. Accordingly, this paper 
aims at enhancing the performance of CSA-based 
Montgomery multiplier while maintaining low hardware 
complexity. Instead of the FCS-based multiplier with two-level 
CSA architecture in, a new SCS-based Montgomery MM 
algorithm and its corresponding hardware architecture with 
only one-level CSA are proposed in this paper. The proposed 
algorithm and hardware architecture have the following 
several advantages and novel contributions over previous 
designs.  
 
First, the one-level CSA is utilized to perform not only the 
addition operations in the iteration loop of Montgomery’s 
algorithm but also B + N and the format conversion, leading to 
a very short critical path and lower hardware cost. However, a 
lot of extra clock cycles are required to carry out B + N and the 
format conversion via the one-level CSA architecture. 
Therefore, the benefit of short critical path will be lessened. To 
overcome the weakness, we then modify the one-level CSA 
architecture to be able to perform one three-input carry-save 
addition or two serial two-input carry-save additions, so that 
the extra clock cycles for B + N and the format conversion can 
be reduced by half. Finally, the condition and detection circuit, 
which are different with that of FCS-MMM42 multiplier, are 
developed to precompute quotients and skip the unnecessary 
carry-save addition operations in the one-level configurable 
CSA (CCSA) architecture while keeping a short critical path 
delay. Therefore, the required clock cycles for completing one 
MM operation can be significantly reduced.  
 
Montgomery Multiplication 
 
In this section, we propose a new SCS-based Montgomery 
MM algorithm to reduce the critical path delay of Montgomery 
multiplier. In addition, the drawback of more clock cycles for 
completing one multiplication is also improved while 
maintaining the advantages of short critical path delay and low 
hardware complexity. A. Critical Path Delay Reduction The 
critical path delay of SCS-based multiplier can be reduced by 
combining the advantages of FCS-MM-2 and SCS-MM-2. 
That is, we can precompute D = B + N and reuse the one-level 

CSA architecture to perform B+N and the format conversion. 
Fig. 7(a) and (b) shows the modified SCS-based Montgomery 
multiplication (MSCS-MM) algorithm and one possible 
hardware architecture, respectively. The Zero_D circuit in Fig. 
7(b) is used to detect whether SC is equal to zero, which can 
be accomplished using one NOR operation. The Q_L circuit 
decides the qi value according to step 7 of Fig. 2(a). The carry 
propagation addition operations of B + N and the format 
conversion are performed by the one-level CSA architecture of 
the MSCS-MM multiplier through repeatedly executing the 
carry-save addition (SS, SC) = SS + SC + 0 until SC = 0. In 
addition, we also precompute Ai and qi in iteration i−1 (this 
will be explained more clearly in Section III-C) so that they 
can be used to immediately select the desired input operand 
from 0, N, B, and D through the multiplexer M3 in iteration i. 
Therefore, the critical path delay of the MSCS-MM multiplier 
can be reduced into TMUX4 + TFA.  

 
Fig. 2. Modified SCS-based Montgomery multiplication 

algorithm 

 
 

 
 

Fig. 3. MSCS-MM multiplier 
 

However, in addition to performing the three-input carry-save 
additions [i.e., step 12 of Fig. 2(a)] k + 2 times, many extra 
clock cycles are required to perform B + N and the format 
conversion via the one-level CSA architecture because they 
must be performed once in every MM. Furthermore, the extra 
clock cycles for performing B+N and the format conversion 
through repeatedly executing the carry-save addition (SS, SC) 
= SS +SC +0 are dependent on the longest carry propagation 
chain in SS + SC. If SS = 111…1112 and SC = 000…0012, 
the one-level CSA architecture needs k clock cycles to 
complete SS + SC. 
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Fig.4. Conventional FA circuit 
 

 
 

Fig.5. Existing CFA circuit 
 
That is, 3k clock cycles in the worst case are required for 
completing one MM. Thus, it is critical to reduce the required 
clock cycles of the MSCS-MM multiplier. B. Clock Cycle 
Number Reduction To decrease the clock cycle number, a 
CCSA architecture which can perform one three-input carry-
save addition or two serial two-input carry-save additions is 
proposed to substitute for the one-level CSA architecture in 
Fig. 2. Fig. 5 shows two cells of the one-level CSA 
architecture in Fig. 3., each cell is one conventional FA which 
can perform the three-input carry-save addition. Fig. 5 shows 
two cells of the proposed configurable FA (CFA) circuit. If α = 
1, CFA is one FA and can perform one three-input carry-save 
addition (denoted as 1F_CSA). Otherwise, it is two half-adders 
(HAs) and can perform two serial two-input carry-save 
additions (denoted as 2H_CSA), as shown. In this case, G1 of 
CFAj and G2 of CFAj+1 in Fig. 5 will act as HA1 j , and G3, 
G4, and G5 of CFAj in Fig. 5 will behave as HA2 j  Moreover, 
we modify the 4-to-1 multiplexer M3 in Fig. into a simplified 
multiplier SM3 .because one of its inputs is zero, where ∼ 
denotes the INVERT operation. Note that M3 has been 
replacedby SM3 in the proposed one-level CCSA architecture. 
According to the delay ratio shown. In addition, we also skip 
the unnecessary operations in the for loop (steps 6 to 13) of 
Fig. 2 to further decrease the clock cycles for completing one 
Montgomery MM. The crucial computation in the for loop of 
Fig. 7(a) is performing the following three-to-two carry-save 
addition: (SS[i + 1], SC[i + 1]) = (SS[i] + SC[i] + x)/2 (1) 
where the variable x may be 0, N, B, or D depending on the 
values of Ai and qi. The computation process of (1) is shown 
in Fig. 9. When Ai = 0 and qi = 0, x is equal to 0 and SS[i]0 
must be equal to SC[i]0 because the sum of SS[i]0 + SC[i]0 + 
x0 is equal to 0. That is, if Ai = 0 and qi = 0, then SS[i]0 = 
SC[i]0. Based on this observation, we can conclude that the 
sum of the carry propagation addition SS[i +1]k+1:0 + SC[i + 
1]k+1:0 is equal to the sum of the carry propagation addition 
SS[i]k+1:1 + SC[i]k+1:1 when Ai = qi = 0 and SS[i]0 = SC[i]0 
= 0. As a result, the computation of (1) in iteration i can be 

skipped if we directly right shift the outputs of one-level CSA 
architecture in the (i − 1)th iteration by two bit positions (i.e., 
divided by 4) instead of one bit position (i.e., divided by 2) 
when Ai = qi = 0 and SS[i]0 = SC[i]0 = 0. Accordingly, the 
signal skipi+1 used in the ith iteration to indicate whether the 
carry-save addition in the (i + 1)th iteration will be skipped can 
be expressed as skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i + 1]0) (2) 
where ∨ represents the OR operation.  

 
Fig. 6. SCS-MM-New algorithm 

 

 
 

 
 

Fig. 7. SCS-MM-New multiplier 

 

 
 

Fig. 8. Skip detector Skip_D 
 

Proposed Algorithm and Hardware Architecture: On the 
bases of critical path delay reduction, clock cycle number 
reduction, and quotient precomputation mentioned above, a 
new SCS-based Montgomery MM algorithm (i.e., SCS-MM-
New algorithm shown in Fig.6) using one-level CCSA 
architecture is proposed to significantly reduce the required 
clock cycles for completing one MM.  
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Fig.9. Proposed CCSA architecture 

 
As shown in SCS-MM-New algorithm, steps 1–5 for 
producing Bˆ and Dˆ are first performed. Note that because 
qi+1 and qi+2 must be generated in the ith iteration, the 
iterative index i of Montgomery MM will start from −1 instead 
of 0 and the corresponding initial values of qˆ and Aˆ must be 
set to 0. Furthermore, the original for loop is replaced with the 
while loop in SCS-MM-New algorithm to skip some 
unnecessary iterations when skipi+1 = 1. In addition, the 
ending number of iterations in SCS-MM-New algorithm is 
changed to k + 4 instead of k + 1. This is because B is replaced 
with Bˆ and thus three extra iterations for computing division 
by two are necessary to ensure the correctness of Montgomery 
MM. In the while loop, steps 8–12 will be performed in the 
proposed one-level CCSA architecture with one 4-to-1 
multiplexer. The computations of qi+1, qi+2, and skipi+1 in 
step 13 and the selections of Aˆ, qˆ, and i in steps 14–20 can be 
carried out in parallel with steps 8–12. Note that the right-shift 
operations of steps 12 and 15 will be delayed to next clock 
cycle to reduce the critical path delay of corresponding 
hardware architecture. which consists of one one-level CCSA 
architecture, two 4-to-1 multiplexers (i.e., M1 and M2), one 
simplified multiplier SM3, one skip detector Skip_D, one zero 
detector Zero_D, and six registers. Skip_D is developed to 
generate skipi+1, qˆ, and Aˆ in the ith iteration. Both M4 and 
M5 in Fig. 11 are 3-bit 2-to-1 multiplexers and they are much 
smaller than k-bit multiplexers M1, M2, and SM3.  In addition, 
the area of Skip_D is negligible when compared with that of 
the k-bit one-level CCSA architecture. Similar to Fig. 4, the 
select signals of multiplexers M1 and M2 in Fig. 11 are 
generated by the control part, which are not depicted for the 
sake of simplicity. Fig. 12. Skip detector Skip_D. At the 
beginning of Montgomery multiplication, the FFs stored 
skipi+1, qˆ, Aˆ are first reset to 0 as shown in step 1 of SCS-
MM-New algorithm so that Dˆ = Bˆ +Nˆ can be computed via 
the one-level CCSA architecture. When performing the while 
loop, the skip detector Skip_D shown in Fig. 12 is used to 
produce skipi+1, qˆ, and Aˆ. The Skip_D is composed of four 
XOR gates, three AND gates, one NOR gate, and two 2-to-1 
multiplexers.  
 
It first generates the qi+1, qi+2, and skipi+1 signal in the ith 
iteration according to (5), (7), and (8), respectively, and then 
selects the correct qˆ and Aˆ according to skipi+1. At the end 
of the ith iteration, qˆ, Aˆ, and skipi+1 must be stored to FFs. 
In the next clock cycle of the ith iteration, SM3 outputs a 
proper x according to qˆ and Aˆ generated in the ith iteration as 
shown in steps 8–11, and M1 and M2 output the correct SC 
and SS according to skipi+1 generated in the ith iteration. That 
is, the right-shift 1-bit operations in steps 12 and 15 of SCS-
MM-New algorithm are performed together in the next clock 
cycle of iteration i. In addition, M4 and M5 also select and 
output the correct SC[i]2:0 and SS[i]2:0 according to skipi+1 
generated in the ith iteration. Note that SC[i]2:0 and SS[i]2:0 
can also be obtained from M1 and M2 but a longer delay is 

required because they are 4-to-1 multiplexers. After the while 
loop in steps 7–21 is completed, qˆ and Aˆ stored in FFs are 
reset to 0. Then, the format conversion in steps 23 and 24 can 
be performed by the SCS-MM-New multiplier similar to the 
computation of Dˆ = Bˆ + Nˆ in steps 3 and 4. Finally, SS[k + 
5] in binary format is outputted when SC[k + 5] is equal to 0. 
 
Simulation and Synthesize Results 
 
Simulation Wave Forms: 
 

 
 
Synthesize Report 
 

 Existing Proposed 

Delay 1158.613ns 1150.550ns 

 
Area 
 

 
Delay 
 
Conclusion 
 
FCS-based multipliers keep up the info and yield operands of 
the Montgomery MM in the convey spare organization to 
escape from the arrangement change, prompting less clock 
cycles however bigger territory than SCS-based multiplier. To 
improve the execution of Montgomery MM while keeping up 
the low equipment many-sided quality, this paper has changed 
the SCS-based Montgomery increase calculation and 
professional represented a minimal effort and elite 
Montgomery secluded multiplier. The proposed multiplier 
utilized one-level CCSA design and skirted the superfluous 
convey spare addition operations to a great extent diminish the 
basic way delay and required clock cycles for finishing one 
MM operation. Trial comes about demonstrated that the 
proposed approaches are in fact fit for upgrading the execution 
of radix-2 CSA-based Montgomery multiplier while keeping 
up low equipment many-sided quality. 
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