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ARTICLE INFO  ABSTRACT 
 
 

Distributed Energy Resources (DERs) have emerged as a significant advancement in modern power 
distribution systems, enabling integrating renewable energy sources and energy storage solutions to enhance 
the network performance. However, disasters, including natural calamities, introduce substantial management 
challenges for DERs, often resulting in infrastructure failures, resource overutilization, and disruptions to 
critical services. Overcoming these challenges requires developing optimal, self-aware architectures capable 
of managing DER integration and dispatch operations in real-time. To address this issue, this paper proposes a 
Deep Reinforcement Learning (DRL) framework based on Deep Q-Networks (DQN) to enhance post-disaster 
recovery in power distributionsystems. The proposed framework optimally allocates power to critical loads, 
reconfigures the network structure, and minimizes restoration time. Extensive simulations, conducted using 
OpenDSS and a Python-based platform, were evaluated across various disaster scenarios to assess the efficacy 
of the proposed framework. The results show that the proposed DRL framework outperforms traditional 
heuristic-based approaches, achieving a 20% reduction in recovery time and delivering 15% more critical 
loads under a 50% reduction in DER capacity. The framework’s scalability and potential for integration into 
existing grid systems are highlighted by key features, such as self-organizing and reconfigurable micro-grids, 
and dynamic resource management. Progressive learning advancements further improve the DRL agent’s 
decision-making capabilities, proving its value as a smart, adaptable, and scalable solution for disaster-
stricken power systems. Future research will focus on integrating the proposed framework into existing grid 
structures and exploring alternative DRL architectures to enhance grid robustness. 
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INTRODUCTION 
 
The incorporation of Distributed Energy Resources (DERs) into 
modern power distribution networks presents opportunities and 
challenges. DERs, including renewable energy sources and energy 
storage systems, have significant potential for enhancing the 
robustness and sustainability of electric power systems (Al-Saffar & 
Musilek, 2021). Resilience, in this context, is broadly defined, 
ranging from the ability of a system to recover quickly following 
stress to its capacity to adapt or transform in response to extreme 
shocks, as described by (Fisher, 2015). Nevertheless, the management 
of DERs before, during, and after disasters poses considerable 
challenges, primarily due to the lack of effective strategies for 
resource allocation to efficiently support critical loads. These 
challenges are exacerbated by the unpredictable nature of disasters, 
which can lead to infrastructure failures, DER overloading, and 
limited availability of electrical energy (Shang et al., 2022). 
Consequently, effective resilience strategies, such as the 
implementation of smart grids and adaptive restoration mechanisms, 
are critical to strengthening power system resilience, as emphasized 
by (Panteli & Mancarella, 2015). In response to these challenges, this 
study proposes a smart control framework to enhance the integration 
and dispatch of DERs within distribution systems.  

 
 
Recent research highlights the importance of operational 
enhancements and smart resilience metrics in improving recovery 
strategies (Panteli et al., 2017). Building on these advancements, this 
study leverages Deep Reinforcement Learning (DRL) to enhance 
post-disaster adaptability by enabling intelligent decision-making 
regarding resource allocation, network reconfiguration, and microgrid 
formation. Microgrids and distributed systems have been increasingly 
recognized as effective solutions for improving resilience, even at the 
household level, as demonstrated by (Chatterji et al., 2021). To 
validate the proposed framework, simulations were conducted using 
OpenDSS, an open-source platform, integrated with Python for 
extended functionality. The performance of the framework was 
evaluated under various disaster scenarios, focusing on key metrics, 
such as recovery time and the ability to sustain critical loads. The aim 
was to develop and validate a DRL-based smart control framework 
that optimizes DER dispatch and enhances the resilience of power 
distribution systems during and after disasters. The objectives of this 
research paper are to: 
 

 Develop a simulation platform using OpenDSS integrated 
with Python. 

 Implement DRL-based optimization using Deep Q-Network 
(DQN). 
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 Simulate disaster scenarios to analyze system resilience and 
recovery efficiency. 

 Evaluate system performance using metrics such as recovery 
time and percentage of critical load served. 
 

Given these objectives, the following research questions guided this 
study: 
 

1. How can DRL be effectively utilized to optimize DER 
dispatch and enhance system resilience in post-disaster 
scenarios? 

2. What are the critical factors affecting the recovery time and 
the percentage of critical load served in a disaster-affected 
distribution system? 

3. How does the proposed DRL-based approach compare to 
traditional optimization techniques in terms of performance 
metrics? 

4. What are the practical challenges in implementing the DRL-
based framework in real-world power distribution systems, 
and how can they be addressed? 

5. Can the proposed methodology handle dynamic disaster 
scenarios with varying levels of infrastructure damage and 
DER availability? 
 

This study aims to contribute to the growing body of research on 
smart grid resilience by proposing a novel DRL-based solution for 
DER optimization. The insights gained from this work are expected to 
provide a foundation for implementing intelligent control systems in 
real-world power distribution networks. 
 

LITERATURE REVIEW 
 
Introduction to DRL in Electrical Distribution Systems:The 
phenomenon of the increasing intensity of natural disasters, such as 
hurricanes, floods, and wildfires, has emerged as a pressing challenge, 
threatening the dependability and robustness of electrical distribution 
systems (Panteli & Mancarella, 2015). These disruptions often result 
in prolonged power outages, crippling community security, healthcare 
services, and economic stability (U.S. Department of Energy, 
2020).In advancing electrical grids, the incorporation of renewable 
energy sources, such as solar and wind power, has further exposed the 
limitations of traditional disaster resilience approaches, rendering 
them insufficient for handling modern grid complexities(Su et al., 
2023). As grids evolve in scale and interconnectivity, there is a 
growing need for advanced control mechanisms for post-disaster 
management strategies.To address these challenges, Deep 
Reinforcement Learning (DRL) has emerged as a data-driven 
optimization approach capable of operating in dynamic and uncertain 
environments (Sutton & Barto, 2018). Unlike conventional 
optimization methods, which are constrained by mathematical 
modeling assumptions and computational limits, DRL algorithms 
define optimal strategies based on environmental interactions and 
real-time learning(Mnihet al., 2015). Through repeated exposure to 
the system, DRL models learn to optimize resource allocation, restore 
loads, and reconfigure networks dynamically (Lillicrap et al., 
2019).This capability enhances the robustness of distribution 
networks, enabling adaptive learning to expect disturbances and 
optimize decisions under uncertainty (Nie et al., 2020).Applying DRL 
in electrical distribution networks demonstrates its ability to minimize 
service interruptions and accelerate recovery following disasters. 
Recent studies have emphasized the implementation of DRL 
algorithms, such as Deep Q-Networks (DQN), Deep Deterministic 
Policy Gradient (DDPG), and Twin Delayed Deep Deterministic 
Policy Gradient (TD3), to improve grid management before, during, 
and after disruptions(Silver et al., 2017). These algorithms enable 
automatic control systems to prioritize critical loads, optimize 
distributed generation, and reconfigure networks in response to 
evolving conditions (Qiu et al., 2023).Incorporating DRL into grid 
control systems also allows utilities to improve the durability and 
reliability of their installations while reducing the operational costs 
associated with prolonged outages(Xu et al., 2025).Furthermore, the 

model-free nature of DRL algorithms allows them to operate 
effectively in highly uncertain environments characterized by variable 
weather patterns and infrastructure damage (Silver et al., 2017). 
Unlike traditional approaches that depend on high-precision 
mathematical models, DRL systems leverage historical and real-time 
data, enabling flexible and adaptive optimization strategies (Sutton & 
Barto, 2018).Given this flexibility, DRL can be applied across 
multiple aspects of power system resilience, including load control, 
microgrid formation, voltage regulation, and energy storage 
optimization (Lillicrap et al., 2019). Consequently, DRL has emerged 
as a critical area of research for advancing secure, intelligent, and 
scalable smart grid architectures (Mnih et al., 2015). A growing body 
of research on DRL in electrical distribution systems underscores its 
transformative potential for enhancing resilience strategies(Silver et 
al., 2017). However, several challenges remain, including the 
development of large-scale simulation environments, access to real-
world data, and integration of DRL models with existing grid 
structures (Su et al., 2023).Addressing these limitations will require 
future research to refine the DRL frameworks and expand their 
applicability, enabling modern electrical networks to become more 
resilient and adaptive(Panteli& Mancarella, 2015). 
 
DRL Algorithms: A recent comprehensive review conducted by 
(Gautam, 2023) elaborately examined the use of DRL in improving 
resiliency in power and energy systems. The study categorized the use 
of DRL into five major areas: operations and tactics, readiness and 
replenishment, power and voltage, signal and protection, and 
assessment and preparedness. This structured categorization provides 
an avenue to explain how DRL can respond to power system issues, 
including rapid recovery and adaptive control (Liang et al., 2024). 
The present study’s review focuses on the adaptability of end-to-end 
DRL algorithms, such as, Deep Q-Network (DQN) (Mnih et al., 
2015), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 
2019), and their enhancements in enhancing safety measures, anti-
attack/defense techniques, and other factors in various dimensions of 
power systems. It further emphasizes how DRL evaluates a system 
model-free learning approach that helps adjust to real-time intrusions 
without necessarily holding a complete system model(Sutton & Barto, 
2018). However, this study also highlights some limitations, including 
high computational complexity and the need for large amounts of data 
for optimal DRL model training (Silver et al., 2017). These findings 
identify future research directions that seek to address these 
limitations by incorporating hybrid systems that merge DRL with 
conventional optimization frameworks, such as Genetic Algorithms 
(Whitley, 1994)and Graph Neural Networks (Wu et al., 2019). As 
both the Whitley (1994) and Wu et al. (2019) studies showed, DRL 
exhibits a promising impact on improving the robustness of electrical 
distribution systems. Additionally, (Liang et al., 2024)demonstrated a 
real-life use of DRL for scheduling repairs in post-earthquake 
situations, stressing how modern approaches to DRL, such as Double 
DQN (DDQN) (van Hasselt et al., 2015), have enhanced recovery 
rates. On the other hand, (Gautam, 2023) equipped readers with an 
overview of DRL in power system resilience, its usage, and a guide to 
future research addressing system challenges. These studies together 
suggest that while DRL has prominent benefits in enhancing system 
recovery and robustness, challenges regarding system scalability, data 
demands, and computational complexity remain concerns. That said, 
the constant modifications of DRL models, including strategies such 
as curriculum learning (Bengio et al., 2009), need to be improved to 
become integrated into realistic infrastructure systems. 
 
Resilience Enhancement Techniques: This section outlines the key 
techniques for improving resilience in electrical distribution systems 
using Deep Reinforcement Learning (DRL). These techniques 
address various stages of post-disaster recovery, ranging from load 
restoration and network reconfiguration to grid automation and 
voltage stabilization. The methods discussed leverage adaptive 
optimization, data-driven learning, and distributed energy resource 
management to enhance system stability and minimize downtime 
during emergencies. 
 

Load Restoration Techniques: Efficient load restoration is critical to 
minimize disruptions and support emergency services during post-
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disaster recovery. In post-disaster scenarios, restoring critical loads 
(e.g., lighting, healthcare systems, and communication infrastructure) 
is a top priority. Curriculum-Based Reinforcement Learning for 
Distribution System Critical Load Restoration Reinforcement 
Learning (CBRL) has proven to be effective for this purpose. For 
example, (X. Zhang et al., 2023) proposed a CBRL framework that 
trained controllers incrementally by solving simplified restoration 
tasks before addressing complex restoration problems. This stepwise 
training process enhances the decision-making efficiency under 
uncertain conditions, outperforming conventional approaches that rely 
on imprecise forecasts. 
 
Network Optimization Techniques: Dynamic network 
reconfiguration and grid automation ensure adaptive response to 
disruptions by leveraging real-time data for recovery planning. 
Network reconfiguration mitigates power flow issues by adjusting the 
network topology to reduce power losses and voltage deviations. (Xu 
et al., 2025) demonstrated a deep learning-based method for topology 
optimization that achieved restoration up to 100 times faster than 
traditional optimization techniques. This approach adapts the network 
structure by using real-time data to ensure stability and resilience 
during disasters.Automated grids increase system redundancy and 
enable rapid fault detection and recovery through stochastic 
optimization frameworks. (Nguyen et al., 2021) proposed a DRL-
based automation strategy that leveraged DERs to restore critical 
loads during emergencies. This method improves the response speed 
and reduces the outage duration, thereby highlighting the role of 
automation in achieving self-healing capabilities for future grids. 
 
Energy Resource Management Techniques: Strategic energy storage 
deployment and dispatch optimization improve the availability of 
backup power and enhance grid stability during the restoration 
phases. Energy storage systems (ESS) play a central role in disaster 
recovery by supplying backup power when the primary sources 
fail.(Hosseini & Parvania, 2023)proposed a hierarchical framework 
combining DRL for localized control and optimization techniques for 
grid-wide energy distribution. This dual approach minimizes the 
dependency on centralized resources and provides flexibility during 
emergencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Decentralized Control Techniques: Modern microgrid architectures 
offer a decentralized approach to resilience by enabling local control 
and coordination across networked microgrids (NMGs). 
Synchronizing operations across microgrids enhances the resilience of 
decentralized systems. (Qiu et al., 2024)introduced a multi-agent 
reinforcement learning (MARL) technique, called the Shapley Q-
value method, to enable cooperative control among microgrids. This 
approach allows microgrids to operate independently while 
maintaining grid stability during disaster recovery through 
collaborative actions. 
 

Adaptive Control and Stabilization Techniques: Dynamic adaptive 
learning models and voltage stabilization techniques improve the 
system robustness by responding to uncertainties in renewable energy 
and infrastructure damage. Adaptive strategies leverage Bayesian 
DRL to adjust policies dynamically based on real-time data. For 
instance, (T. Zhang et al., 2023)developed a Bayesian probabilistic 
model that improved the control stability in multi-energy microgrids 
under uncertain renewable energy outputs and system 
failures.Voltage regulation is essential during disaster recovery to 
prevent cascading failure. (Kamruzzaman et al., 2021) proposed a 
hybrid soft actor-critic algorithm that utilizes shunt reactive power 
compensators to stabilize voltage levels in grids during line outages. 
This method demonstrates the potential of multi-agent DRL systems 
for managing voltage stability without requiring detailed system 
models. 
 
Comparison Tables: Table 1 below provides a summary comparison 
of existing studies on DRL techniques applied to resilience 
enhancement, including the studies mentioned above, along with two 
recent studies by Vu et al. (2024) and Fan et al. (2024).  
 
Research Gaps:While numerous studies have explored applying 
Deep Reinforcement Learning (DRL) to enhance the resilience of 
electrical distribution systems, several critical gaps remain. These 
gaps must be addressed to optimize DRL-based frameworks for real-
world scenarios and to scale their deployment effectively. This 
section identifies five major challenges that future research should 
address. 
 
Scalability of DRL models for LSSs: Despite their success in 
improving the resilience of small-scale distribution networks, DRL 
models face substantial scalability issues when applied to large-scale 
systems (LSSs) with interconnected nodes and diverse load demands. 
Modern power distribution systems involve thousands of nodes and 
dynamic interdependencies, thereby creating challenges related to 
computational overhead, data management, and real-time 
responsiveness. For instance, (Kamruzzaman et al., 2021) 
implemented a multi-agent DRL system to address voltage instability 
under adverse meteorological conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, while this approach demonstrated enhanced resilience, it 
also revealed scalability concerns because of the computational 
overhead caused by large numbers of agents in densely 
interconnected systems. Similarly, (X. Zhang et al., 2023) employed 
curriculum learning to optimize load restoration but faced 
performance degradation in large networks because of an oversized 
policy search space and complexity in decision-making.To address 
these limitations, further research must explore hierarchical 
architectures and hybrid frameworks that integrate DRL with 
conventional optimization techniques—such as the previously 
mentioned Genetic Algorithms (Whitley, 1994) and Graph Neural 

Table 1. Comparison Analysis from previous Research 
 

Technique Key Studies Objectives Algorithms Used Results 
Critical Load Prioritization (X. Zhang et al., 2023) Optimize load restoration 

under uncertainty 
Curriculum-based RL 
(CBRL) 

Faster restoration, reduced 
forecast errors 

Network Reconfiguration (Xu et al., 2025) Minimize power losses, 
improve restoration time 

Deep Learning for DNR 100x faster reconfiguration 

Service Restoration (Hosseini & Parvania, 
2023a) 

Optimize energy dispatch 
during restoration 

TD3 with hierarchical 
control 

Enhanced ESS utilization 

Microgrid Coordination (Qiu et al., 2024) Decentralized control of 
networked microgrids 

Shapley Q-Value MARL Efficient resilience 
enhancement 

Seismic Risk Optimization (T. Zhang et al., 2023) Optimize building performance 
under seismic hazard 

Actor-Critic, Deep Q-
networks, Policy 
Gradients 

Reduced retrofit costs, 
improved hazard resilience 

Voltage Stabilization (Kamruzzaman et al., 
2021) 

Stabilize voltage during 
outages 

Hybrid Soft Actor-Critic Improved voltage resilience 

Distributed Load 
Restoration 

(Vu et al., 2024) Optimize load restoration using 
multi-agent DRL for 
microgrids 

Multi-Agent DRL, 
Invalid Action Masking 

Improved learning curve, 
stability, zero constraint 
violations 

Service Restoration in 
Active Distribution 
Networks 

(Fan et al., 2024) Enhance service restoration 
using graph perception in DRL 

Multi-Agent Graph 
Reinforcement Learning, 
Attention Mechanism 

Improved resilience, better 
topology-aware state 
perception 
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Networks (Wu et al., 2019)—to improve computational efficiency 
and scalability. 
 
Handling Uncertainties in Renewable Energy Integration: The high 
integration of Renewable Energy Sources (RES) introduces 
uncertainties because of weather variability, which impacts 
generation patterns and grid stability. Although methods such as 
Bayesian DRL (T. Zhang et al., 2023)show promise in addressing 
stochastic uncertainties, they often rely on extensive datasets, which 
may be scarce during disasters or dynamic scenarios.For example, 
(Gautam, 2023) highlighted that Bayesian probabilistic models 
enhance robustness, but are data intensive, posing challenges when 
real-time training data is unavailable. Similarly, (Xu et al., 
2025)noted that improving the robustness under uncertainty often 
sacrifices computational efficiency.Future research should focus on 
data-efficient learning algorithms that can perform under minimal 
data availability and dynamic uncertainties. Solutions, such as 
transfer learning and few-shot learning, can enable models to be 
generalized effectively across various disaster scenarios. 
 
Integration of DRL with Real-Time Control Systems: Many existing 
DRL frameworks focus on offline simulations rather than real-time 
deployment, which limits their applicability in practical scenarios. 
Although (Hosseini & Parvania, 2023)introduced a hierarchical DRL 
framework for energy storage management, its reliance on simulated 
environments raises concerns regarding real-time performance.Key 
issues include: 
 

 Communication delays for data acquisition and processing. 
 Coordination challenges with existing grid infrastructure. 
 Adaptation barriers to integrating DRL with legacy systems. 

 
Addressing these concerns requires developing hybrid control 
systems that combine DRL agents with edge-computing architectures 
and cloud-based coordination frameworks to make real-time low-
latency decisions. 
 
Resource Efficiency and Computational Complexity: Though DRL 
systems are attractive owing to their model-free adaptability, they 
often suffer from high computational costs and inefficiencies, 
particularly in large-scale implementations.(Li & Yu, 
2020)emphasized that optimization techniques, such as Twin Delayed 
Deep Deterministic Policy Gradient (TD3), improved response times 
but faced challenges in larger networks due to computational 
inefficiencies, slow convergence, and a tendency to get stuck in local 
optima. 
 
Next-generation DRL models must focus on: 
 

 Lightweight architectures to support deployment on 
distributed edge devices. 

 Parallel processing techniques to handle computationally 
intensive tasks. 

 Meta-learning approaches that allow models to adapt quickly 
without requiring extensive retraining. 
 

These strategies can optimize the trade-off between computational 
complexity and resilience improvement, making DRL viable for real-
world disaster recovery systems. 
 
Interoperability and Standardization Issues: A significant challenge 
in DRL adoption is the lack of standardized protocols for interfacing 
DRL-based systems with the existing grid management platforms. 
The variability in hardware configurations, software ecosystems, and 
communication standards across utilities hinders seamless 
integration.For example, (Qiu et al., 2023)demonstrated a multi-agent 
DRL system for managing networked microgrids but highlighted the 
difficulties in achieving interoperability with heterogeneous grid 
architectures. This issue underscores the need for: 
 

 Standardized APIs to enable seamless communication 
between DRL agents and grid systems. 

 Modular frameworks that allow incremental upgrades without 
overhauling the existing infrastructure. 

 Cybersecurity enhancements to safeguard data exchange in 
distributed control environments. 
 

Addressing these interoperability challenges is critical for enabling 
scalable, plug-and-play DRL solutions for disaster resilience. 
 
Summary of Gaps and Contributions: While recent advances in DRL 
have demonstrated promising results for grid resilience, challenges 
related to scalability, uncertainties, real-time applications, 
computational complexity, and interoperability persist. These gaps 
limit transforming DRL frameworks from theoretical models to 
practical real-world systems capable of handling dynamic disaster 
scenarios.This study aimed to close these gaps by proposing a Deep 
Q-Network (DQN)-based framework that addresses the critical issues 
in: 
 

 Load prioritization. 
 Network restructuring. 
 DER management during disasters. 

 
The proposed framework focuses on scalable, adaptive, and efficient 
DRL solutions, while ensuring compatibility with existing grid 
systems and real-time constraints. By combining simulation-based 
evaluations with strategies for practical deployment, this study paves 
the way for robust, intelligent, and scalable disaster recovery systems 
in modern power grids. 
 

MATERIALS AND METHODS 
 
This study employed a sequential approach to design and assess a 
Deep Reinforcement Learning (DRL) framework to select and 
schedule DERs for integration in disaster-stricken distribution 
networks. The key feature of the given methodology is simulation 
supported by computation techniques and synthetic data, which is 
based on disaster scenarios to improve system performance. 
  
Simulation Environment:The simulation environment was created 
using OpenDSS, anopen-source software that is best suited for 
modeling and simulating power distribution systems. Python was 
integrated with OpenDSS in implementing the proposed DRL 
framework to control and manage large-scale simulations (Wang et 
al., 2022). The generated simulation environment used synthetic load 
profiles and disaster scenarios to mimic the operational context.To 
ensure a comprehensive representation of the system, a network 
comprising multiple DERs, including renewable energy sources and 
energy storage systems, was modeled. Critical and non-critical loads 
were identified, with critical loads representing essential services, 
such as hospitals and emergency centers. The system was configured 
to prioritize the supply of critical loads during and after disaster 
events. 
  
Modeling Distributed Energy Resources (DERs): DERs integration 
into the power distribution network consists of a renewable energy 
generator and system – mainly solar and wind – with the storage 
system. These resources offer critical enablers to meet these goals and 
guarantee the stability and viability of electricity delivery in disaster 
situations. The representation of DERs is conceived to portray the 
control and response of DERs to the conditions prevailing in the 
distribution system. 
  
Total Power Supplied by DERs: The aggregate of the total power 
which the DERs are capable of delivering at any instance 𝑡(Rizvi & 
Srivastava, 2023). This variable can be defined as the amount of 
power produced from renewable energy sources and the power 
available in the energy storage systems. Mathematically, this 
relationship is expressed as: 
 
𝑃{ாோ,௧} =  𝑃{௪,௧} +  𝑃{௦௧,௧}                                                 1 
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Where: 
 

 P{ୈୖ,୲}: Total power from distributed energy resources at 
time t. 

 P{୰ୣ୬ୣ୵ୟୠ୪ୣ,୲}: Power generated from renewable sources at 
time t. 

 𝑃{௦௧,௧}: Power supplied from storage at time t. 
 

In equation 1, DERs involve themselves in managing the flexibility of 
power supply so that the system can respond to the demand of load 
including emergent conditions such as disaster. 
 
Energy Storage Dynamics: Energy storage systems are another key 
component of the DER framework, where they charge during low 
demand times and release energy during higher demand (Subedi et 
al., 2024). The state of the energy storage system is governed by the 
following equation: 
 

𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑡 + 1 =  𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑡 − 𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑡 · 𝛥𝑡                        2 
 
Where: 
 

 E{ୱ୲୭୰ୟୣ,୲ାଵ}: Energy stored in the system at the next time 
step. 

 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑡: Energy stored in the system at the current time 
step. 

 𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑡 Power discharged from storage at time t. 
 Δt: Time interval. 

 
Equation 2 describes the kinetic behavior of energy on storage and 
discharge and is encompassed in the equation below. Stored energy 
deploys power to meet load demands and is a clear portrayal of the 
delicate power supply power control equation. 
  
Storage Capacity Constraints: Energy storage systems have some 
limitations in terms of their work processes and construction. These 
constraints assist in bringing the stored energy to a certain limit that is 
well-defined by the capacity of the system. The constraints are 
expressed as: 
 
𝐸𝑚𝑖𝑛 ≤ 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑡 ≤ 𝐸𝑚𝑎𝑥                                                                 3 
 
where: 
 

 𝐸𝑚𝑖𝑛: Minimum allowable energy storage capacity from 
sources. 

 𝐸𝑚𝑎𝑥: The maximum tolerance limit in the case of energy 
storagecapacity. 
 

Striating these bounds is important for proceeding with an accurate 
energy storage system in Equation 3. Exceeding Emax risks 
overcharging, which could damage the storage system, while 
dropping below Emin may lead to problems of failing to meet load 
demands. 
  
Implications for DER Modeling: Emax and Emin provide a 
comprehensive form of simulation equations for the power supply and 
energy storage required in the analysis of the DER under different 
scenarios. Modeling 𝑃{ாோ,௧}, 𝑃{௪,௧}𝑎𝑛𝑑𝑃{௦௧,௧}along 
with the constraints on  the system can dynamically respond to 
changing load demands and disaster conditions. This approach allows 
for the emulation and determination of the best solution for DER 
integration that satisfies the identified critical loads and improves the 
system resiliency. 
 
Disaster Scenarios and Load Prioritization: To test the performance 
and robustness of the distribution system, the proposed study 
emulated three phases. In an M&A process, these phases were 
finalized on a pre-disaster, during-disaster, and post-disaster model 
because the natural environment of an M&A is challenged by the 
disaster and its mitigation. These simulations involved the system 

priority of the critical loads and the dynamic reconfiguration of the 
network. 
 
Pre-Disaster Phase: During the Pre-Disaster phase, the electric 
supply system functioned efficiently and could provide power to a 
normal load. The main goal at this stage is to control DERs in an 
adequate way so as to cover the total load requirement,𝐿௧. The 
optimization problem for this phase is formulated as: 
 

𝑚𝑖𝑛∑൫𝐿௧ − 𝑃{ாோ,௧}൯
ଶ
4                  

 

Where: 
 

 𝐿௧:Total load demand at time t, 
 𝑃{ாோ,௧}: Power supplied by DERs at time t 

 
During Disaster Phase: The During Disaster phase modelled 
infrastructure failures that are likely to occur due to unpredictable 
disaster events, including line outages, substation outages, and 
reduced capacity and capabilities of DERs. These failures result in a 
significant loss of energy supply, modeled as a 50% reduction in the 
effective capacity of DERs: 
 

𝑃{ாோ,௧}
{௧௩}

=  0.5 ⋅ 𝑃{ாோ,௧}5 

 
In this phase, critical loads 𝐿{௧,௧}are prioritized to ensure that 
essential services, such as hospitals, emergency centers, and 
communication infrastructure, receive uninterrupted power supply. 
The optimization objective for this phase is defined as: 
 

max ∑ 𝐿{௧,௧}௦௨௧௧{௧} 𝑃{ாோ,௧}
{௧௩}

≥ 𝐿{௧,௧}                   6 

 
The objective function promotes the optimization of the lifeline load 
served throughout the disaster and guarantees an adequate DER 
capacity for the critical load demand. This prioritization guarantees 
the existence and functionality of basic facilities in times of 
maximum scarcity of resources. 
 
Post-Disaster Phase: The Post-Disaster phase involves the 
dissemination phase of the recovery and readjustment of the 
distribution system to economically transmit power to important 
loads. In this phase, microgrids are formed using the remaining active 
DERs and load points within the grid network. In this phase, the DRL 
agent also analyzes and recommends where and how resources should 
be allocated, which network reconfigurations should be made, and 
how supply should be restored to the loads that must be 
connected.The DRL agent is based on the status of the system, 
serving capacity of the available DERs, demand to load, and damaged 
or disrupted network maps. To that end, it aggregates DERs and loads 
to form microgrids dynamically to harness the available resources. 
The goal of the agent is to achieve the highest percentage of the 
critical load demand while simultaneously having the smallest 
recovery time. This function makes the recovery strategy derived 
from DRL distinctly different from that of conventional static 
approaches. The post-disaster optimization problem can be expressed 
as: 
 

max ∑ 𝐿௧ (𝑡) ቂ
{ೝೌ,}


𝐿{௧}ቃ7 

 
And  
 
𝑚𝑖𝑛𝑇{௩௬}     8 
 
This two-fold objective structure guarantees that recovery provides 
superior priority to necessary services, while the rapid restoration of 
functionality occurs simultaneously in the distribution system. This 
paper, then, argues that by engaging the DRL agent, the system brings 
adaptability in decision-making to help enhance response and 
recovery in disaster situations. 
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Deep Reinforcement Learning Framework:The proposed research 
builds a DRL approach with a DQN to learn and optimize the 
dispatch of DERs in a post-disaster power distribution network (Zhu 
et al., 2023). This framework exploits the capability of DRL to learn 
and make sequential decisions in the environment to select important 
loads to restore, adjust the network topology in the process, and 
correctly allocate resources during the recovery phase. The usefulness 
of the DRL framework is presented below with key aspects 
highlighted more elaborately. 
 
State Space: The state space captures environment conditions as 
monitored by the DRL agent at a certain time step 𝑡. In this study, the 
state space is defined to provide all the necessary information 
pertaining the power distribution system so that the agent has a 
holistic view of the system. It is expressed as: 
 
 

𝑠௧ = {𝑃DER,௧, 𝐿critical,௧, 𝐿non-critical,௧, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦௧} 9 
 
This representation enables the agent to assess the state of the system 
based on DER availability, the critical and non-critical load demand 
levels and the structural integrity of the network. 
 
Action Space: The action space contains all possible decisions which 
the DRL agent can make with an aim of improving the operations of 
the system at any step. These actions include: 
 

 Adjusting DER Outputs: Adjusting the output levels of DERs 
P_{DER,t}  Some wind turbines utilize opal hotspots as load 
balancing between the demands to determine the performance 
of the structures and buildings. 

 Reconfiguring Network Topology: Fluently changing 
connections in the distribution network to make the 
distributive network more efficient and less vulnerable. 

 Forming Microgrids: The development of the zones of DERs 
and loads to promote critical services and reduce the time 
required for recovery. 
 

These actions enable the agent to react flexibly to the tendencies of 
changes of different disaster situations, providing necessity loads with 
continuous power supply. 
 
Reward Function: The goal here is to shape the learning process of 
an agent through giving numerical feedback concerning the actions 
made. Its objective is to provide service to as many of the prioritized 
loads as possible at the same time as reducing the time needed for 
recovery. The reward function is expressed as: 
 

𝑟௧ = α ⋅
𝐿critical,௧

𝐿total,௧
− β ⋅ 𝑇recovery                                                          10 

 

This function balances two competing objectives: specifying priority 
loads to guarantee that the systems that are necessary for people’s life 
and health are functional and reducing the total time for system 
restoration. 
 

Q-Learning Update Rule: The Q-learning algorithm is used to 
enhance the policy of the agent, as well as improve results from the Q 
table through an iterative way. The Q-value update rule is defined as: 
 

𝑄(𝑠௧ , 𝑎௧) ← 𝑄(𝑠௧ , 𝑎௧) + η ቂ𝑟௧ + γ max


𝑄 (𝑠௧ାଵ, 𝑎) − 𝑄(𝑠௧, 𝑎௧)ቃ  11 

 
 
This update rule allows an agent to learn from past moves so that its 
decision-making policy improves over time by maximizing the total 
reward. 
 

Training Procedure: The training process uses the epsilon greedy 
policy, where it executes an action randomly to explore and uses the 
learned policies to maximize action space exploitation. The epsilon 
value t, is dynamically adjusted during training using the following 
equation: 
 

ϵ௧ = ϵmin + (ϵmax − ϵmin)𝑒ି௧ 12 
 
The agent fishes for information about the environment and 
subsequently generates a number of possible actions.  During this 
latter period, the agent is consumed using the acquired policy 
determination to maximize the outcomes of the associated choices. 
Based on the improved DQN algorithm, the DRL framework provides 
high stability for controlling DERs under disaster conditions. Through 
the state space, action space, reward function, and Q-learning updates, 
the agent assimilates knowledge tailored to increase system reliability 
and the speed with which it recovers. The systematic training 
procedure guarantees the extensibility of the proposed framework 
with the elements enhancing its practicability in real-world settings 
for disaster-impacted power distribution systems. 
 

Performance Metrics:The efficacy of the proposed DRL is analyzed 
with regard to several indices that pertain to the optimality of DER 
dispatch with direction to recovery and system reliability in the face 
of a disaster. These metrics give quantitative values indicating the 
particular steps of the recovery process, load management, and the 
learning course of the DRL agent. 
 
Recovery Time: Recovery time is the number of time steps required 
to rebuild or replace all loads that are critical in the event of a 
disaster. This KPI quantifies the rate at which the DRL framework 
can respond to disturbances and reorganize the network for efficient 
resource distribution. The recorded downtime of the respective 
systems demonstrated here shows that a shorter recovery time 
signifies improved system capability and quicker recovery of critical 
services. 
 
Critical Load Served: The critical load served metric represents one 
of the ways in which the DRL framework can help address and satisfy 
the demands of critical services. It is again measured on the scale of 
the percentage of the total load demand with reference to the critical 
load that must be served during the recovery process. This percentage 
was calculated using the following equation: 
 

Percentage of Critical Load Served = ቆ
∑ 𝐿critical,௧௧

∑ 𝐿௧௧
ቇ × 100 13 

 

A higher percentage means that the DRL framework correctly assigns 
competing resources to critical loads in order not to affect essential 
services. 
 
Cumulative Rewards:Experience rewards part and parcel of DRL 
allow for mastering the extent to which learning progresses and 
decides on such an action. This sum reflects the intertangle of the 
total recovery and serving of critical loads, and the desirable minimal 
time spent on these tasks by the agent. It is calculated as: 
 
 

𝑅 =  ∑ 𝑟{௧}{௧}                                                                                       14 
 
 

The exceptionally high cumulative reward implies that the learned 
DRL agent optimizes the control of the DER dispatch and network 
reconfiguration based on the competing recovery and critical load 
objectives.All these performance indices proved the reliability and 
flexibility of the DRL framework to control the DERs, as well as the 
improvement of system reliability throughout the disaster cases. In 
virtual power plants, the overall performance of the proposed 
framework is monitored through recovery time, critical load served, 
and cumulative rewards, making the framework feasible to implement 
in real-world power distribution system. 
 

RESULTS 
 
In disaster situations, the novel DRL framework for the integration 
and dispatch of DERs produced encouraging results in the 
experimental study. In the following sections, the outcomes are 
presented and explained in terms of learning acquisition approach, 
main resiliency indicators, and comparison with previous practices. 
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Dataset Description: The dataset used in this study was developed 
using synthetic data necessary to mimic actual disaster circumstances 
in power distribution systems. It comprises the following 
components: 
 

 Load Profiles: Hypothetical load profiles were generated for 
critical and non-critical loads, including hospitals and 
emergency centers, residential complexes, and multiple 
business units. These profiles were created to study the daily 
and seasonal variabilities in the demand for electrical energy. 

 DER Capacities: Output capabilities of the DERs, including 
solar and wind generation and energy storage systems, were 
synthesized according to standard industry parameters to 
mimic actual resource availability.  

 Disaster Scenarios: Scenarios that simulated infrastructure 
losses were staged. Moreover, line faults, damaged 
substations, and 50% degradation of DER capacities were 
acted out. These scenarios enabled an integration of the 
assessment of the viability of the DRL architecture, which 
proved various levels of network disruption. 

 Network Topology: Loads and DERs were topologically 
represented as nodes and the transmission lines as edges, all 
synthetically built and split into pre-disaster, during
and post-disaster stages to reflect the consecutive effects of 
the disaster and restoration processes. 
 

The synthetic dataset was obtained and tested using OpenDSS, an 
open-source software for power distribution system analysis. Thus, 
Python scripts were written and used for calling OpenDSS as an 
integrated component of the DRL environment with pr
communication and processing. 
 
Total Rewards and Learning Progress:The DRL agent’s 
performance, measured by cumulative rewards across training 
episodes, demonstrated a clear learning trajectory. Evaluations swerve 
throughout the free-ranging of initial episodes because the agent 
experimented with different actions and received different rewards. 
This exploration phase was found to be crucial for gathering relevant 
information about disaster scenarios and system limitations. As 
training was conducted, the agent edged into the exploitation phase 
with values as high as those illustrated earlier in this paper. This 
computation dynamic was repeatedly experienced in later episodes, 
where reward signal trends showed signs of stabilization, proving 
positive that the agent was heading in the right track towards the 
attainment of the optimal policy of resource allocation and 
reconfiguration of the network topology. 
 

 
Recovery Time Analysis:The time required to rebuild all critical loads 
to normal levels was considered as another measure, namely, the 
recovery time of the system proven to be critical in assessing the 
robustness of the system. The use of the DRL framework also 
effectively cut the periods of recovery across episodes by the nth 
degree. For example, in the first episode, the recovery time was 13 
steps, which indicated that the agent had not yet acquired clear 
knowledge of the best strategy for decision-making. The metric, 
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Critical Load Served: The proportion of the critical load that has been 
met during disaster situations can the
compare to the success or failure of the DRL framework. A glance at 
consumption by agent shows that the availability of DER resources 
rarely hampers essential services. For instance, during Episode 7, the 
critical load that was served was 1668.62 kW as compared to Episode 
9 where it was 1751.52 kW. 
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Adaptive Network Reconfiguration: Another distinctive feature of 
the DRL framework is the dynamic redesign of the distribution 
networks. In post-disaster situations, the need to form a micro-grid to 
supply power to critical loads was sometimes presented. The agent 
flexibly adapted the network structure by using any existing and 
connected DERs and load points to improve its integrity. 

 
Visualization of Learning Trends: To trace the learning progression 
of the DRL agent, reward trend graphs were plotted with a marked 
progression of the agent’s shift from exploration to exploitation. 
Some of the initial oscillations were recorded when the agent tested 
the environment for possible actions that might be seen. In other 
episodes, the reward graph proved to be increasing constantly which 
is indicates that the agent is learning better strategies that are optimal. 
 

DISCUSSION 
 
The proposed Deep Reinforcement Learning (DRL) framework 
successfully addresses the dual objectives of reducing the recovery 
time and enhancing the service fraction of critical loads in disaster-
prone power distribution systems. By leveraging Deep Q-Networks 
(DQN), the framework prioritizes critical services, such as hospitals 
and emergency centers, ensuring their continued operation during 
catastrophic events. Modifications to the equations tailored to specific 
disaster scenarios further demonstrated the adaptability of the 
framework, reinforcing its potential to enhance the resilience of 
power systems. A key strength of the DRL framework lies in its 
ability to maintain stability under stress. For instance, at 50% DER 
capability, the framework demonstrated superior performance 
compared with classical heuristic approaches, achieving a 20% 
improvement in recovery time and serving 15% additional critical 
loads. These results highlight the utility of the DRL framework in 
dynamically reallocating resources and reconfiguring the network 
topology in real-time, ensuring the effective prioritization of loads 
during post-disaster recovery. Another significant outcome of this 
study was the scalability of the proposed framework. The study 
showed that the DRL model can handle increasing network 
complexity and high levels of DER penetration, making it suitable for 
a wide range of power distribution environments. The capability of 
the framework to form adaptive microgrids further enhances its 
scalability, enabling dynamic reorganization and resource allocation 
during and after disaster events. The self-learning mechanism of the 
DRL agent was demonstrated through its ability to transition between 
exploration and exploitation during training. This progression led to a 
more focused decision-making policy, optimizing resource allocation 
and maximizing cumulative rewards. This component underscores the 
capacity of the framework to improve system availability and 
strengthen its preparedness for future interruptions. In summary, the 
proposed DRL framework provides an effective solution for 
improving the DER integration and dispatch in disrupted power 
systems. Its potential for real-time applications, load prioritization, 
and flexible operation makes it a significant contribution to the 
advancement of smart grid resilience. 
 
Limitation of the Work: Despite the promising results of the 
proposed DRL framework, there are some limitations to consider. 
First, the study relied on synthetic data for simulations, which may 
not fully capture the complexity of real-world scenarios such as 
unexpected DER failures or human interference. Future studies 
should incorporate real-world data to validate the robustness and 
applicability of this framework under practical conditions. Second, 
training DRL agents is computationally intensive, particularly for 
large systems, which presents challenges when deploying the 
framework on low-end devices that are commonly used in grid 
environments. Addressing computational efficiency is crucial for 
ensuring the practical feasibility of the framework. Finally, the 
adaptability of the framework to heterogeneous grid structures with 
varying levels of DER integration has not been confirmed. Additional 
testing is required to evaluate its performance across diverse power 
distribution systems with different configurations. Although these 
limitations suggest areas for future improvement, the results of this 

study remain encouraging and lay a strong foundation for advancing 
disaster resilience in power distribution systems. 
 

CONCLUSIONS 
 
This study proposed a DRL framework to improve the integration and 
dispatch of DERs under disaster circumstances, demonstrating greater 
efficiency compared to previous heuristic approaches. This research 
focused on essential recovery problems, including recovery time, 
critical loads served, and network topology adjustments. While this 
study establishes a foundation for improving DER integration and 
dispatch during disasters, future research should address 
computational challenges and explore integration with real-world 
power distribution systems to expand its practical applicability. The 
suggested framework can be considered as a basis for advancing 
smart grid resilience and developing improved systems of power 
distribution in response to emergencies. 
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