

FUTURE OF ARTIFICIAL INTELLIGENCE IN AGILE SOFTWARE DEVELOPMENT

1Mariyam Mahboob 2Mohammed Rayyan Uddin Ahmed, 3Zoiba Zia, 1Mariam Shakeel Ali
and 3Ayman Khaleel Ahmed

1Student [IT Department], Muffakham Jah College of Engineering and Technology, Hyderabad, India

2Student [CSE Department], Muffakham Jah College of Engineering and Technology, Hyderabad, India
3Student [AI-DS Department], Muffakham Jah College of Engineering and Technology, Hyderabad, India

ARTICLE INFO ABSTRACT

The advent of Artificial intelligence has promising advantages that can be utilized to transform the landscape
of software project development. The Software process framework consists of activities that constantly require
routine human interaction, leading to the possibility of errors and uncertainties. AI can assist software
development managers, software testers, and other team members by leveraging LLMs, GenAI models, and
AI agents to perform routine tasks, risk analysis and prediction, strategy recommendations, and support
decision-making. AI has the potential to increase efficiency and reduce the risks encountered by the project
management team while increasing the project success rates. Additionally, it can also break down complex
notions and development processes for stakeholders to make informed decisions. In this paper, we propose an
approach in which AI tools and technologies can be utilized to bestow maximum assistance for agile software
projects, which have become increasingly favored in the industry in recent years.

Copyright©2024, Mariyam Mahboob Mohammed Rayyan Uddin Ahmed et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

AI has certainly transformed our lives in ways that we cannot
comprehend. Due to reduced computational costs and breakthroughs
in algorithms, AI has excelled in domains like decision-making,
pattern recognition, and natural language processing. Consequently,
AI has become increasingly integrated into software engineering,
effectively minimizing human errors [1]. Project management is a
discipline that seeks to optimize a team’s efforts and resources in the
development of a project through various models that provide a
framework for team management, decision-making, risk mitigation,
and customer satisfaction. One popular software project management
model that has gained acceptance in the industry is the agile
development model. Agile development methodology relies heavily
on the concept of a product backlog, which serves as a repository of
user requirements that expand as demands evolve. A backlog is
further divided into smaller, actionable tasks that are scheduled by the
development team, leading to project delivery in incremental
milestones. This approach effectively mitigates risks by segmenting
the development costs into multiple stages or sprints. The agile
process encompasses various iterations or sprints, starting from
gathering user stories and feedback to ideation, planning, and
execution. Although numerous tools that assist the agile framework
exist, for example, JIRA which aids in data collection and task
management, decision-making still predominantly relies on human

intervention, a gap that artificial intelligence (AI) aims to bridge. By
leveraging AI tools such as Large Language Models (LLMs),
autonomous agents, and AI algorithms, systems can simulate risk
management, project trajectory planning and provide estimated pros
and cons while continuously learning from decisions made
throughout the development stages

HISTORY

Over the last several decades, the software industry has undergone
many developments and transformations in numerous software
development methodologies. Each method possessed eccentric
qualities that distinguished it from other methods. One of the methods
was the Traditional Software Development Method (TDSM), which
was largely composed of waterfall and spiral methods that depended
on well-organized planning, process, documentation, and
comprehensive design. The TSDMs are still widely used in industry
because of their straightforward, organized, and structured nature and
their predictability, stability, and high assurance [2]. Though many
TSDMs have been developed since the waterfall model to provide
significant productivity improvements, none are free from major
problems including blown budgets, missed schedules, and flawed
products. They have failed to provide dramatic improvements in
productivity, in reliability, and simplicity [3].

ISSN: 2230-9926

International Journal of Development Research
Vol. 14, Issue, 08, pp. 66405-66408, August, 2024

https://doi.org/10.37118/ijdr.28614.08.2024

Article History:

Received 17th May, 2024
Received in revised form
29th June, 2024
Accepted 06th July, 2024
Published online 30th August, 2024

Available online at http://www.journalijdr.com

Citation: Mariyam Mahboob Mohammed Rayyan Uddin Ahmed, Zoiba Zia, Mariam Shakeel Ali and Ayman Khaleel Ahmed. 2024. “Future of artificial
Intelligence in Agile Software Development”. International Journal of Development Research, 14, (08), 66405-66408.

 RESEARCH ARTICLE OPEN ACCESS

Key Words:

Software Development, Agile Software Development,
Artificial Intelligence, Generative Artificial
Intelligence.

Corresponding Author: Mariyam Mahboob,

Challenges in the Agile Software Development Process

Agile Software Development Methods: To address the limitations of
Traditional Software Development Models (TSDMs), numerous
Agile Software Development Methods like Scrum, Extreme
Programming (XP), and Lean Software Development (LSD) have
evolved which focus on iterative and incremental development,
customer collaboration, and frequent delivery[4] through a light and
fast development life cycle. Although many benefits of agile
approaches including shorter development cycles, higher customer
satisfaction, lower bug rate, and quicker adaptation to changing
business requirements have been reported [2], XP has emerged as a
solution to issues that existed due to the long development cycles of
traditional models. Despite constant changes in requirements in small
and medium-sized teams, it’s proven successful in software
development. The main characteristics of XP include customer
participation, coordination, communication, quick feedback, precise
documentation, and pair programming. Lean Software Development
(LSD) is an iterative methodology that focuses on reducing waste and
optimizing the entire process to achieve the maximum possible
gain[8]. It focuses on quick and efficient feedback between customers
and software developers to attain better productivity, workflow, and
development. It does not adhere to firm guidelines and therefore is
considered to be one of the most flexible Agile Methods.

Issues and Challenges: XP is arguably one of the best methods
provided that the project has to be completed in a shorter time frame.
It prioritizes a fast-paced working environment for prototyping,
unlike other methods that consume more time. The XP programmers
emphasize and prioritize software coding tasks rather than
documentation tasks. Since numerous changes cannot be documented
systematically, there is a high possibility of unexpected failures that
cannot be tracked. Lack of precise documentation leads to the
recurrence of bugs and errors that were resolved earlier. Furthermore,
In extreme programming, meetings are held frequently with the
customers/investors regarding the progression made on tasks daily.
This serves to be an issue as it costs additional time while meeting the
programmers face-to-face can result in exhaustion when the customer
has a fairly distant location. The main idea of coding (and one of the
most XP aspects) is to implement pair programming. It is
recommended by the XP that a development team of two members
share one computer and implement side-by-side software. One
developer writes the code, while the other developer challenges,
supports, and observes the selected method to obtain better results [5].
This extensive pair programming increases the expenses as it is not
required for small teams with a limited budget. Overall, the
Extreme Programming method requires lots of effort, persistence, and
patience as tight deadlines are required to be accomplished every day.
On the other hand, Lean Software Development focuses on the
project management aspects of a project and specifies no technical
practices; it integrates well with other agile methodologies, such as
XP, that focus more on the technical aspects of software development
[7]. A major challenge faced here is that it involves comprehensive
and precise information at every stage that results in documenting and
recording every stage diligently which is hard to keep track of.
Secondly, the prime objective is to eliminate waste and optimize the
entire process to achieve the maximum possible gain [8]. It doesn’t
encourage the idea of heavy documentation and usage of diagrams so
this process of elimination takes up a huge amount of time and energy
resulting in slow development. Lean Software Development
encourages flexibility of ideas from customers, but this leads to issues
and challenges that create complexity and loss of originality. Lastly,
Lean Software Development heavily relies on the team members. If
the team is found inconsistent with their skills, this inability leads to
inefficiency and affects the overall productivity. The conditions are
thus similar to the Traditional Software Development Methods.

METHODOLOGY

Enhancing Agile Development Through Generative Artificial
Intelligence: The above obstacles in Agile Software Development
present serious issues in the efficiency and product development

quality at the cost of more labor and time. These serious issues can be
significantly reduced by integrating modern artificial intelligence at
various stages of the agile software development process, such as
Extreme Programming (XP) and Lean Software Development (LSD).
Modern Artificial intelligence, which consists of Generative Artificial
Intelligence, AI agents, AI algorithms, and LLM-based applications,
can streamline the agile software development process by offering
innovative solutions to enhance efficiency, collaboration, and
adaptability. Generative AI, through its ability to analyze patterns and
generate deterministic ideas, can assist teams in decision-making, and
ideation, and can overcome hurdles caused by human errors while
also nurturing a culture of continuous, uninterrupted innovation [9].
However, that is not to say, such tools haven’t existed in the past.
Tools similar to the above have existed, but they’re limited in their
abilities to assist the development and management team. The
existing agile tools such as JIRA, Assembla, and Axosoft help with
project management that is user stories, product backlogs, sprints, and
sprint backlogs [10]. The existing tools do not go beyond the scope of
management to make agile software project development and
management a seamlessly integrated process with minimal erroneous
cases. The emergence of numerous generative software platforms
enables the conversion of textual commands to programming code.
Developmental tools such as Visual Studio Code, JetBrains IDE, and
other IDEs can be expanded in their capabilities to assist the
programmer with the integration of GitHub Copilot. GitHub Copilot
is an AI assistant built on top of OpenAI Codex, a generative AI
system developed by OpenAI.

The recent release of GPT-4o has propelled companies like Microsoft
to fuse AI with operating systems to make the development of new
applications and software much easier [11]. IBM’s Watson, which is
renowned for its natural language processing and cognitive
computing, has also been implemented for many obstacles faced in
the software engineering process. Watson leverages AI to analyze
unstructured data which includes but is not limited to documentation,
forums, and code repositories. It also supports developers by
providing insights and helping them navigate complex codebases
[12]. Likewise, the integration of generative AI models can mitigate
developmental challenges and project management challenges in the
agile software development process. Some of the key features of XP
are pair programming, test-first, coding standards, continuous
integration, metaphor, and refactoring. Generative AI models like
GitHub Copilot can be integrated to assist the programmer as well as
test the code as soon as it’s written to check if there are no errors, as a
result reducing the labor required. The integration of update features
when the team reaches certain milestones the stakeholders can ensure
customer involvement throughout the process. Furthermore, the AI
system can also provide simple explanations, documentation, and
visual instructions to the customers, project managers, and other
programmers which makes the process of transferring from one stage
of the development process to another process. This can be done
through a LLM-based AI called Sora AI. Depending on the workflow
of the ongoing project, the AI can also estimate the time required to
complete the project based on the requirements input into the model
generating the test code. We can implement Generative AI models
likewise to other agile process models like LSD to reduce the
workload on programmers, make the process time-efficient,
minimizing the number of iterations needed all while keeping the
stakeholders in the loop. This eliminates waste, optimizes the project
to deliver the best, and makes it easier for team members to work
with code while making it easier to scale without inciting conflict
among the team members. The project is well-documented and tested
at each stage. Thus, as a result, making the agile software
development and management process emphasizes the principles that
it is laid upon while minimizing the cons involved in the process.

Integration of Artificial Intelligence Algorithms in Agile Software
Development Lifecycle: The agile development life cycle consists of
five major phases: Initiation, planning, execution, monitoring &
control, and closing [13]. This section proposes to utilize AI
algorithms to automate and enhance the Agile SDLC. As the adoption
of Generalized AI becomes more prevalent throughout various

66406 Mariyam Mahboob et al., Future of artificial Intelligence in agile Software Development

industries, as highlighted by [14], problems in the domain of software
development can be solved utilizing existing intelligent algorithms.
This can be achieved by translating the agile process to the space of
machine learning effectively connecting problems with existing
solutions[15]. The first phase initiation can utilize supervised machine
learning to predict the project success rate based on resources, efforts,
cost, and other critical factors. The second phase
leverage supervised machine learning to assign tasks to tea
members based on the previous performance data. The third and
fourth stages closely relate to tasks that can leverage generative AI
capabilities as discussed in the above and below sections in great
detail. Tasks like report generation, data analysis
would come under these phases.

 Figure 1: Integration of AI into Agile Software Development

 Figure 2. Integration of AI Algorithms in Agile Software

Development Lifecycle

The Role of Artificial Intelligence in Extreme Programming
Lean Software Development: In the agile methodology, the two of
the most significant frameworks are Extreme Programming (XP) and
Lean Software Development (LSD). This section explores the various
use cases of AI algorithms in the frameworks mentioned

Use Cases of AI in Extreme Programming (XP):

a. Automated Testing and Debugging:

66407 International Journal of Development Research,

problems in the domain of software
development can be solved utilizing existing intelligent algorithms.

agile process to the space of
machine learning effectively connecting problems with existing

first phase initiation can utilize supervised machine
learning to predict the project success rate based on resources, efforts,

and other critical factors. The second phase i.e. planning can
assign tasks to team

the previous performance data. The third and
fourth stages closely relate to tasks that can leverage generative AI
capabilities as discussed in the above and below sections in great
detail. Tasks like report generation, data analysis, and automation

Figure 1: Integration of AI into Agile Software Development

Integration of AI Algorithms in Agile Software

The Role of Artificial Intelligence in Extreme Programming and
In the agile methodology, the two of

the most significant frameworks are Extreme Programming (XP) and
Lean Software Development (LSD). This section explores the various
use cases of AI algorithms in the frameworks mentioned above.

Use Cases of AI in Extreme Programming (XP):

The usage of AI can help developers evade inefficient code
practices by utilizing patterns from historic data[16] and help
generate test cases.

b. Risk Assessment: Predictive AI algorithms can be used to

identify potential risks and issues before they escalate,
allowing teams to implement mitigation strategies
preemptively [17].

c. Continuous Integration and Deployment:
the optimization of product deployment
deployment-related issues[1

Use cases of AI in Lean Software Development (LSD):

a. Process Optimization: AI can provide valuable insights and
iterative advice to streamline workflow and prevent
redundant effort. By the use of specific Machine Learning
models, we can predict when systems or tools are likely to
fail and halt the development process. Using such a method
allows us to take appropriate measures to prevent any system
failure that could halt the development process [19].

b. Performance Monitoring:
track system performance and user interactions. By
monitoring this data, AI can provide necessary
improvements that can help the development teams deliver
the best quality software consistently.

c. Quality Assurance: Through the use of AI
the quality of the code can be managed. Such tools can
continuously analyze the code and assess it for possible
vulnerabilities, hence reducing the risk of failure.

CONCLUSION

Our research indicates that the current software development life
cycle for agile processes can be further enhanced through the usage
of artificial intelligence. This can potentially help companies save
time, reduce production costs, mitigate r
decision-making. Our research indicates a lack of effectiveness in
existing agile applications and mentioned numerous approaches to
integrate artificial intelligence (AI) into an agile development life
cycle which, as discussed, offers better decision
of routine tasks, and risk analysis that directly impact the overall
success of the project.

REFERENCES

A. Zafar, "Unlock a New Era of Innovation with Windows Copilot,

Runtime, and Copilot PCs," Windows Developer Blog, 21
2024.
https://blogs.windows.com/windowsdeveloper/2024/05/21/unlock
-a-new-era-of-innovation-with
copilot-pcs/

Alia Mahmood, Aysha Al Marzooq,
Leverage Project Management Informatio
Data Driven Decision Making in Project Management
https://journals.gaftim.com/index.php/ijbas/article/view/215/148

Anas BAHI, Jihane GHARIB and Youssef G
Generative AI for Advancing Agile Software Development and
Mitigating Project Management Challenges” International Journal
of Advanced Computer Science and Applications(IJACSA),
15(3), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150306

Anoop Mishra, Abhishek Tripathi,
for Research on the Application of AI/ML in ITPM: I
Project Management Journal Article”
global.com/gateway/article/315290

Boehm, B. & Turner, R. (2003, June) Using risk to balance agile and
plan-driven methods. IEEE Computer, 36(6), 57

Brooks, F. P. (1995). The mythical man
Addison-Wesley.

H. K. Dam, T. Tran, J. Grundy, A. Ghose and Y. Kamei, "Towards
Effective AI-Powered Agile Project Management," 2019

International Journal of Development Research, Vol. 14, Issue, 08, pp. 66405-66408, August

The usage of AI can help developers evade inefficient code
practices by utilizing patterns from historic data[16] and help

Predictive AI algorithms can be used to
identify potential risks and issues before they escalate,
allowing teams to implement mitigation strategies

Continuous Integration and Deployment: AI can be used in
the optimization of product deployment leading to minimal

related issues[18].

Use cases of AI in Lean Software Development (LSD):

AI can provide valuable insights and
iterative advice to streamline workflow and prevent
redundant effort. By the use of specific Machine Learning
models, we can predict when systems or tools are likely to
fail and halt the development process. Using such a method
allows us to take appropriate measures to prevent any system

halt the development process [19].
Performance Monitoring: AI can continuously analyze and
track system performance and user interactions. By
monitoring this data, AI can provide necessary
improvements that can help the development teams deliver

quality software consistently.
Through the use of AI-powered tools,

the quality of the code can be managed. Such tools can
continuously analyze the code and assess it for possible
vulnerabilities, hence reducing the risk of failure.

Our research indicates that the current software development life
cycle for agile processes can be further enhanced through the usage
of artificial intelligence. This can potentially help companies save
time, reduce production costs, mitigate risk factors, and assist in

making. Our research indicates a lack of effectiveness in
existing agile applications and mentioned numerous approaches to
integrate artificial intelligence (AI) into an agile development life

offers better decision-making, automation
of routine tasks, and risk analysis that directly impact the overall

A. Zafar, "Unlock a New Era of Innovation with Windows Copilot,
Runtime, and Copilot PCs," Windows Developer Blog, 21-May-

https://blogs.windows.com/windowsdeveloper/2024/05/21/unlock
with-windows-copilot-runtime-and-

Alia Mahmood, Aysha Al Marzooq, “How Artificial Intelligence can
Leverage Project Management Information System (PMIS) and
Data Driven Decision Making in Project Management”
https://journals.gaftim.com/index.php/ijbas/article/view/215/148

Anas BAHI, Jihane GHARIB and Youssef GAHI, “Integrating
Generative AI for Advancing Agile Software Development and
Mitigating Project Management Challenges” International Journal
of Advanced Computer Science and Applications(IJACSA),

http://dx.doi.org/10.14569/IJACSA.2024.0150306
Anoop Mishra, Abhishek Tripathi, Deepak Khazanchi “A Proposal

for Research on the Application of AI/ML in ITPM: Intelligent
Project Management Journal Article” https://www.igi-
global.com/gateway/article/315290

Boehm, B. & Turner, R. (2003, June) Using risk to balance agile and
IEEE Computer, 36(6), 57-66.

Brooks, F. P. (1995). The mythical man-month. Reading, MA:

H. K. Dam, T. Tran, J. Grundy, A. Ghose and Y. Kamei, "Towards
Powered Agile Project Management," 2019

August, 2024

IEEE/ACM 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER),
Montreal, QC, Canada, 2019, pp. 41-44, doi: 10.1109/ICSE-
NIER.2019.00019.

Harleen K. Flora , Swati V. Chande. A Systematic Study on Agile
Software Development Methodologies and Practices.

https://technlogy-buzz.medium.com/navigate-the-code-mastering-
risk-management-in-software-development-d7194ca775da

https://www.linkedin.com/pulse/enhancing-agile-practices-predictive-
analytics-deep-dive-efficiency-hy6mc?trk=public_post

Kine AI, “Enhancing Agile Practices with Predictive Analytics: A
Deep Dive into Efficiency”, Accessed on 24-5-2024,

Marar, Hazem W. "Advancements in Software Engineering Using
AI." Computer Software and Media Applications, vol. 6, no. 1,
2023. https://doi.org/10.24294/csma.v6i1.3906

Mark R. “Navigate the Code: Mastering Risk Management in
Software Development!”, Medium Article

Schmidt, C., Agile Software Development, in Agile Software
Development Teams. 2016, Springer. p. 7-35.

Scott W. Ambler, “The Agile System Development Lifecycle”
http://ambysoft.com/essays/agileLifecycle.html, 2005, Accessed
on 24-5-2024

Smith RG, Eckroth J. Robert S. Building AI applications: Yesterday,
today, and tomorrow. AI Magazine 2017; 38(1): 6–22. doi:
10.1609/aimag.v38i1.2709.

Stazinger, J. W., Jackson, R. B., & Burd, S. D. (2005). Object-
oriented analysis & design with a unified process. Boston:
Thomson CourseTechnology.

Vemuri, Naveen & Thaneeru, Naresh & Tatikonda, Venkata. (2024).
AI-Optimized DevOps for Streamlined Cloud CI/CD.
International Journal of Innovative Science and Research
Technology. 9. 7. 10.5281/zenodo.10673085.

Zhang, H., Cruz, L., & Van Deursen, A. (2022). Code Smells for
Machine Learning Applications. ArXiv. /abs/2203.13746

66408 Mariyam Mahboob et al., Future of artificial Intelligence in agile Software Development

