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ARTICLE INFO  ABSTRACT 
 
  

In recent years, the use of drones has become more common for different practical applications, 
such as goods delivery, area monitoring, image capture and traffic management. For these 
applications to be possible, it is necessary that the drones use the same airspace, constituting the 
Internet of Drones (IoD). Considering that IoD is a complex network, different challenges and 
problems involving this architecture still need to be studied. One of the challenges in IoD is the 
Unmanned Aerial Vehicles (UAV) Path Planning (PP) problem so that they arrive at their 
destinations safely, fulfilling their assigned tasks. In this paper, we deal with the UAV path 
planning problem offline in the IoD considering uncertainties, which are modeled using fuzzy 
numbers (PP-IoD fuzzy problem). As a resolution method we used the Dijkstra and Ford Moore 
Bellman algorithms adapted for the case where there are fuzzy parameters. Comparisons with the 
classical version of Ford-Moore-Bellman algorithm were performed and demonstrate the 
effectiveness and accuracy of the solutions obtained through fuzzy versions of two classic and 
well-known algorithms.  
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INTRODUCTION 
 
Drones, as Unmanned Aerial Vehicles (UAVs) are known, are used in urban and non-urban environments for different activities, namely 
transportation, agriculture, environment monitoring, health, communication, entertainment, search and rescue, to name a few. Considering that all 
services need to compete for the same airspace, the creation and control of a drone network is necessary and relevant. Gharibi et al (1) presented an 
architecture to control the coordinated access of drones in the airspace called Internet of Drones (IoD). According to the definition, this 
environment has well-defined airways and a traffic control to manage this network. Considering this scenario, several companies using drones 
will probably share the same environment and the same airways, for example in the delivery of goods. Currently, there are several studies related 
to delivery applications with drones. Large and well-known companies, Amazon (2), Google, Ifood (3) are invest- ing in research and possibilities 
to make their deliveries via drones. In this sense, it is evident the need for well-defined airways so that drones can use them in a safe and 
controlled way, making it possible to carry out a range of applications that will facilitate the lives of people as well as urban centers, 
collaborating so that cities become intelligent. Regarding drones, the biggest limitation is their battery capacity (4). Differ- ent factors affect the 
consumption and performance of a drone’s battery, such as vertical and horizontal maneuvers, acceleration and deceleration, change of direction, 
and environmental factors that are often difficult to measure. In addition, drones have limited memory on their on-board computers, requiring the 
development of algorithms for path planning that are efficient and do not use a large amount of the drones’ memory. The UAV path planning is 
one of the big challenges in the IoD context, being necessary to plan effective flight paths that allow drones to reach their destinations, avoiding 
obstacles and minimizing the amount of energy they need to consume, considering that several drones can share the same airspace. This problem in 
three-dimensional space can be classified with respect to the time domain into offline or online. In the offline case, information about the 
environment is required a priori to be used in the construction of the path, whereas in the online case, one does not have information about the 
environment a priori but during the flight, through sensors. To assist in the organization of the airspace, the IoD is composed of airways. The node 
respon- sible for coordinating the drones is the Zone Service Provider (ZSP). In the IoD, the ZSP is responsible for controlling the airspace (1). 
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Considering the layered structure for IoD, proposed by Gharibi et al (1), one way to define and organize the airways is to consider that they are 
parallel to landways, for which there are well-established rules (5, 6). In this case, it is plausible to consider that we have overlapping 
airways, which can be represented by layered graphs. 
 
UAV Path Planning sob uncertainties: In the literature, there are different algorithms to solve the UAV path planning problem. Qadir et al (7) 
classified the algorithms for path planning into conventional (Rapidly exploring random tree (RRT), Artificial Potential Field, Voronoi), cell-
based (A∗, D∗, Dijkstra), model-based (Mixed Integer Linear Programming, RRT Series), and learning-based (neural networks, evo- lutionary). In 
addition, models that consider uncertainties can be solved via probabilistic methods or using numbers and/or fuzzy sets. In this paper, we propose 
an approach to the PP-IoD fuzzy by consider- ing airways parallel to landways, represented by layered graphs, which can be used to compactly 
represent the environment in which drones can fly. In addi- tion, we consider uncertainties in the costs of the arcs, modeled using fuzzy numbers. 
The uncertainties represent factors that are inherent to the UAV path planning problem and are difficult to predict, such as wind, rain, birds 
flying in the airway, among others. Finally, we use two classical shortest path algorithms, Dijkstra and Ford-Moore-Bellman, adapted for cases 
where there are uncertainties in the data. In this scenario, the UAV path planning in the IoD focuses on getting the optimal paths for different 
drones sharing the same airspace. The remainder of this paper is organized as follows. In section II we present the motivation for this study. In 
section III, the related papers. In section IV we present the preliminary concepts of set theory. Section V presents the solution methodology. 
Section VI, the results and their analysis and, finally, in section VII the final considerations and directions for future work. 
 
Motivation and Background: The UAV path planning problem is widely studied, some works in the literature (4, 8–12) address this problem in 
different contexts, factors, techniques and applications; however, there is still much to be studied and explored regarding this problem in IoD 
context. Considering the path planning problem in an IoD environment, one of the major challenges is to determine where the airways can pass 
through. Bine et al (5, 13) consider airways to be parallel to landways, this way drones would only fly through permitted public areas. The 
Figure 2 illustrates airways parallel to landways. This structure can help organize drone traffic and facilitate the construction of laws that regulate 
it, especially in the context of IoD. The Figure 2 illustrates overlapping airways on existing airways forming new paths. The overlaps airways 
provid airway expansion by overlapping them it different altitudes (13). Airways are established to be parallel to landways and are free from 
static obstacles. 
 
Another challenge is the uncertainties, that are present in all real environ- ments, through factors that are difficult to measure, such as wind, rain, 
birds flying in the airway, among others. Besides climatic factors (such as wind and rain), and obstacles (birds flying, for example), the time or 
cost of travel can also be considered uncertain since they are usually affected by adverse or even unforeseen conditions. Therefore, considering the 
aspects listed, in this work 
 

 
 

Fig. 1 Parallel Airways and public × private airways illustration (13) 
 

 
 

 
Fig. 2 Overlaps airways illustration (13) 

 
we use two classical and well-known algorithms for the shortest path problem, but in versions adapted for the context of uncertainties considering 
IoD with airways parallel to the landways. 
 
The contributions of this work comprise: 
 
 Introduce the PP-IoD fuzzy problem; 
 Use an airway topological architecture proposed by Bine et al (5, 13) and Svaigen et al (6) that is shown to be efficient for the addressed 

problem and can be used in different situations involving drones; 
 Use the algorithms of Dijkstra (14) and Ford-Moore-Bellman (15) both adapted for the fuzzy case, using different concepts from fuzzy 

theory: the Dijkstra algorithm adapted finds optimal multipaths and uses the graded mean integration representation method to deal with 
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fuzzy parameters; whereas the Ford-Moore-Bellman algorithm deals with fuzzy parameters through comparison indices and finds a set of 
non-dominated solutions. 

• Show that graph-based algorithms, adapted for cases where there are uncer- tainties, are useful and provide interesting solutions to current 
problems, even if they are not new. 

• Presents and evaluate the results obtained using both algorithms showing that by considering uncertainties in the arc costs, the solution obtained 
can be useful and relevant in the context of IoD, where multiple drones share the same airspace. 

 
The Section 3 presents works related to the topics covered in this article. 
 
Related Works: The UAV path planning problem has received extensive attention from researchers from different places in the world. Although 
existing works address the path planning (PP) under different methodologies, in the context of IoD and considering uncertainties there are still 
challenges and open research ques- tions that lack studies and propositions. In this section, we first list the works that inspired us and later the 
related works. Deng et al (2012) (14) propose an adaptation of classical Dijkstra’s algo- rithm to deal with uncertain situations. The costs and 
capabilities of the arcs are modeled using fuzzy numbers and they use the graded mean inte- gration representation of fuzzy numbers to perform 
the necessary arithmetic operations. At the end of the algorithm, a single shortest path is obtained. Hernandes (15) propose different algorithms 
considering uncertainties. One of these algorithms is based on the classic Ford-Moore-Bellman algorithm and through possibility indices and order 
relations of fuzzy set theory, it obtains a set of non-dominated solutions. In this paper, we uses the Dijkstra’s fuzzy algorithm proposed by Deng et 
al (14) and Ford-Moore-Bellman fuzzy algorithm proposed by Hernandes (15). We adapt the same to get multiple paths, since we are considering 
multiple drones. Regarding IoD, we use the layered architecture proposed by Bine et al (5) and Svaigen et al (6). Bine et al (5) propose a routing 
protocol for an IoD scenario based on the Geocast protocol and consider an Iod scenario with different airways and different altitudes. Svaigen et 
al (6) propose a protection mechanism that guarantees privacy and security in IoD scenarios. They consider that the IoD environment is 
represented by layered graphs, with different overlapping airways and different altitudes. Therefore, the works of Deng et al (14), Hernandes (15), 
Bine et al (5) and Svaigen et al (6) inspired us and provided ideas to propose this paper. It is noteworthy that although we used the layered 
structure of IoD proposed by Bine et al (5) and Svaigen et al (6) and small adaptations in the algorithms proposed by Deng et al (14) and 
Hernandes (15), this work differs from those that inspired us because we are dealing with the UAV path planning fuzzy problem in IoD, which 
was not addressed in the works listed above. 
 
UAV Path Planning sob uncertainties: Below, we briefly list works that address UAV path planning in different ways and that can be considered 
works related to this paper. Bine et al (2022) (16) proposes a heuristic method for coverage path planning in the IoD environment (CPP-IoD). They 
presents a mathematicalmodels for the CPP-IoD and uses nearest neighbor heuristic for to get the paths of all drones, later they use refinement 
heuristics to improve the obtained solutions. Liu et al (2022) (17) deal with surveillance problem with multiple drones. A multi-UAV cooperative 
path optimization (MCPO) model is proposed. They proposed a strategy to avoid obstacles or inaccessibleregions using fuzzy constraints. 
Ntakolia et al (2022) (18) propose a novel Genetic Algorithm with Fuzzy Logic Inference System to solve the UAV multi-objective path planning 
prob- lem. They presents a formulation for the multi-objective problem considering the minimization of the traveled distance, smoothness of the 
path, and the maximization of energy efficiency. Wang (2022) (19) propose a method based in the fuzzy control to solve the collision avoidance 
problem in the path planning of mobile robots. Wan et al (2022) (20) propose a method to the 3D UAV path planning problem based on improved 
multi-objective swarm intelligence algorithm. The trajectory planning mission is transformed a multi-objective optimization task with multiple 
constraints, and the objective function is minimize the total fight path length and size of terrain threat. Ahmed et al (2021) (12) address the UAV path 
planning problem in the con- text of IoD, proposing an energy efficient strategy to avoid static and dynamic obstacles. An energy model for UAV 
path planning problem is presented, and considers the impact of motion (hovering, vertical and horizontal flight). The paths are represented using 
Bezier curves. Ergezer and Leblebicioğlu (2021) (21) propose an algorithm for the online path planning with multiple UAVs. The objective is 
collect information from desired regions and avoid forbidden regions in a fixed time window. The environment considered is two-dimensional. 
Chen et al (2020) (22) deal with the dynamic UAV path planning problem in 2D and 3D environments. A fuzzy logic inference system was 
proposed to avoid obstacles in a dynamic environment. To obtain the dynamic paths, the authors proposed Fuzzy-Kinodynamic Rapidly 
Exploring Random Tree. Golabi et al (2020)(23) present a mathematical formulation for the multi- objective UAV path planning problem in three-
dimensional static environment. The objective function is composed of path length, energy consumption, and maximum cumulative path risk. To 
solve the problem, they uses sev- eral evolutionary multi-objective optimization algorithms and obtains a set of non-dominated paths. Song et al 
(2020) (24) proposes a dynamic path planning strategy based on fuzzy logic and improved ant colony optimization (ACO). They integrated the 
improved ACO with the fuzzy logic, constituting the fuzzy logic ant colony optimization (FLACO) to find the optimal path for UAVs. 
 
UAV Path Planning sob uncertainties: The work by Liu et al (2019) (25) addresses the dynamic UAV path planning problem in a three-dimensional 
environment through an improvement in the evolutionary optimization algorithm. The drone flight environment considered in this paper is complex 
and there is little information about it. Adhikari et al (2017) (26) propose the fuzzy differential evolution method for 3D path planning for drones. 
The problem is modeled through bi-objective (fuel and threat cost) unrestricted optimization. They use a fuzzy controller to find the values of the 
differential evolution parameters during the optimization process. Although works in the literature have achieved great advances regarding UAV 
path planning problem, there is still much to be done in the context of IoD. Moreover, the UAV path planning problem in three-dimensional space 
has been studied by different authors, but they consider only one drone, or they consider multiple drones but do not consider IoD. Uncertainties 
are usually modeled using fuzzy set theory or probabilistic methods and represent factors that are difficult to predict and are usually incorporated into 
classical methods, such as shortest path algorithms, genetic algorithms, among others. Based on related works and existing gaps regarding UAV 
path planning in IoD, this work aims to solve the UAV path planning problem in IoD consider- ing uncertainties, since in this architecture several 
drones can share the same airspace. The optimal paths are obtained offline, leaving the ZSP to transmit their information to each of the drones. 
The Section 4 presents the succinct form used in the concepts of fuzzy set theory in this work. 
 
Preliminaries: In this section, some basic concepts are briefly introduced. For more details, see the references (14, 27–29). The fundamental idea 
of the fuzzy set is the pertinence gradual, that is, relaxing this requirement by admitting values between 0 and 1 to quantify the degree to which 
each element of the universe is associated with a class. The closer the value closer the value is to 1, the more compatible the element is with the 
properties that distinguish the class. 
A fuzzy set A is described by a function that maps the elements of a universe X into the unitary interval (0, 1): 
 
µA : X → (0, 1). 
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A fuzzy set can be seen as a set of ordered pairs ordered pairs {x, µA(x)}, where x is an element of X and µA(x) denotes the degree of membership 
of x in A. 
8  
 
• Fuzzy Numbers 
 
A triangular fuzzy number, illustrated in the Figure 3, denoted by ã = (m, α, β), is described by the following membership function: 
 

  (1) 
 
where m is the modal value (element of the universe with degree of pertinence degree equal to 1), α is the left spread and β is the right spread 
(α, β, and ̸= 0). The values m − α and m + β are the limiting, lower and upper limits, respectively. Thus, a triangular fuzzy number can also 
be denoted by ã = (m − α, m, m + β). 
 

 
 

Fig. 3 Triangular fuzzy number 
 
A trapezoidal fuzzy number or a fuzzy interval, illustrated in the Figure 4, denoted by ã = (m1, m2, α, β) is described by the following 
membership function: 
            

 (2) 
0, otherwise. (2) 
 
where m1 is the lower extreme of the modal value, m2 the upper extreme of the modal value the upper end of the modal value, α the left spread 
and β the right spread, (α, β, and ≠ 0). The values m1 − α and m2 + β are the lower and upper limits, respectively. Thus, a trapezoidal fuzzy 
number can also be denoted by a = (m1 − α; m1; m2; m2 + β). 
 
Arithmetic operations with fuzzy numbers: There are different ways to perform operations with fuzzy numbers and in this paper we will use the 
ones described below. For more information, see the references (14, 27). 
 
UAV Path Planning sob uncertainties 
 

 
 

Fig. 4 Trapezoidal fuzzy number 
 
Let ã = (m1, α1, β1) and ˜b = (m2, α2, β2) two triangular fuzzy numbers and k ∗ R. The operations are defined: 
 
• Sum: 
 

ã + ̃ b = (m1 + m2, α1 + α2, β1 + β2) 
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• Multiplication by scalar: 
 
k ã  = (km1, kα1, kβ1), se k ≥ 0 
 
• Subtraction: 
  
k ã  = (km1, −kα1, −kβ1), se k < 0 
 

ã − ̃ b = ã + (−˜b) = (m1 − m2, α1 + β2, β1 + α2) 
 
The algebraic operations of trapezoidal fuzzy numbers occur in a similar manner. Another way to perform operations with fuzzy numbers is 
through the graded mean integration representation method, which can be used to obtain a single minimum fuzzy path (14). Given a triangular 
fuzzy number ã = (m1, α1, β1), and defining a1 = m1 − α1, a2 = m1 and a3 = m1 + β1 the graded mean integration representation integration method 
of triangular fuzzy number ã is defined as (14): 
 
P ( ã)  = 

6 (a1
 + 4 × a2 + a3) 

 
Now, let ã 
  

= (m1, α1, β1) and ˜b = (m2, α2, β2) where a1 = m1 − α1, 
 
a2 = m1, a3 = m1 + β1 and b1 = m2 − α2, b2 = m2 and b3 = m2 + β2, we have that addition is defined as (14): 
 

P (ã○+ ̃b) = P (ã) + P (̃ b) = 1  

6 (a1
 + 4 × a2 + a3) + 

6 
(b1 + 4 × b2 + b3) 

 
The multiplication is defined as: 
 

P (ã○x ˜b) = P ( ã)  × P (̃ b) = 1  

6 (a1
 + 4 × a2 + a3) × 

6 
(b1 + 4 × b2 + b3) 

 
UAV Path Planning sob uncertainties 
 
Given a trapezoidal fuzzy number, ã = (m1, m2, α, β), we define a1 = 
 
m1 − α, a2 = m1, a3 = m2, a4 = m2 + β. The graded mean integration representation integration method of trapezoidal fuzzy number is defined as 
(14): 
1 
P ( ã)  = 

6 (a1
 + 2 × a2 + 2 × a3 + a4) 

 
Similar to that of triangular numbers, addition via the graded mean inte- gration representation integration method of two trapezoidal fuzzy numbers 
is defined by (14): 
 

P (ã○+ ̃ b) = P ( ã)+P (˜b) = 1
 (a1+2×a2+2×a3+a4)+ 1 (b1+2×b2+2×b3+b4) 

 
And the multiplication by: 
 

P (ã○x ˜b) = P ( ã)×P (˜b) = 1
 (a1+2×a2+2×a3+a4)× 1 (b1+2×b2+2×b3+b4) 

 
Comparison between fuzzy numbers: There are different ways to compare fuzzy numbers, for example, dominance, possibility index, etc. In this 
paper, we uses the possiblity index of Okada and Soper (30) as follows. 
 

Let ã = (m1, α1, β1) and ˜b = (m2, α2, β2) two triangular fuzzy numbers, then ã ∗ ̃ b ( ã  dominates ˜b) if and only if 
 

m1 ≤ m2, (m1 − α1) ≤ (m2 − α2), (m1 + β1) ≤ (m2 + β2) e ã ̸= ̃ b. 
 
Through the definition above, Okada and Soper (30) introduced the concept of path dominance for the optimal path problem fuzzy. With the theory 
of possibility it is attributed to each solution a degree of possibility of being the optimal solution. It is necessary to find all solutions and compare 
them to obtain the degree of possibility of each one (31). 
 
Let G = (N, A) be a graph with cost c˜ = c˜ij associated to its arcs. Let two subgraphs T 1 and T 2 be, T 1 ̸= T 2. The degree of possibility that T 1 has cost 
smaller than T 2 is given by (31): 
 

 
where: 
 

62860                                      International Journal of Development Research, Vol. 13, Issue, 06, pp. 62856-62867, June, 2023 
 



Poss: possibility measure; 
 
 µT 1 (u) and µT 2 (v) are the cost membership
 sup min : the supreme value of the minimum (intersection), that is, the 

from the intersection of the µT 1 (u) and µT 2 
 
The degree of possibility that T is the optimal solution

 
This makes the problem difficult to solve because, besides having to enu
complete. 
 

METHODOLOGY 
 
In this section, we present the considerations on the PP
already men- tioned, the topological architecture of the airways used in this work is base
according to the works of Bine et al (5, 13, 16) and
This airway architecture allows the creation of overlapping airways, as shown
spe- cific airways to avoid collisions with other drones during flight, for example. Figure
are areas where drone flight is prohibited, such as airports and government buildings. This airway format helps protect private airways
be used in different applications and scenarios. Still
consider priority airways for deliveries related to 
architecture and the UAV path planning problem, there are no obstacles as the 
difficult to predict situations in this scenario). The
between them through connecting arcs. Table 1 presents the characteristics that differentiate the UAV path plan
traditional PP. As in the work by Bine et al (16), in
 
The three main differences between PP-IoD fuzzy and traditional PP are described as follows.
 
First, in traditional PP, the goal is finding a collision
collision-free path in each airway considered. 
 
 
 
Table 1 PP-IoD fuzzy characteristics. 
 
Feature Description 
 
Uncertainties Winds and temporary obstructions can occur in the airways, such as the pres
fuzzy set theory. Airways-parallel to Terrestrial Roads
the airspace. Shared airspace Multiples UAVs can
 
 Second, in traditional PP, drones can fly in any

directions. 
 Third, in PP-IoD fuzzy, we consider uncertanties in the costs of the arcs that are modeled through the theory of fuzzy sets, which a

some cases, to obtain more than one optimal path
numbers and a single shortest path is obtained, regardless of the method used.

 
Scenario definition for the UAV path planning: In this work, the IoD is composed of a set of drones 
a layered graph G representing the airways and their 
 
• Airways: similar to a real urban road scenario. A graph 

arcs such that ∀e ∈ E, e = (n1, n2, altitude), n
• Drones: each drone d ∈ D has an origin and a destination on the route. Thus, it is assumed that there is one airway 

points chosen for the beginning and the end of the route.
• ZSP: responsible for coordinating the set of drones 

in this case. 
 
The different airways considered are represented by
rep- resented by (G1, h1), (G2, h2), (G3, h3), · · · , 
landing airways were not spec- ified. It is assumed that there is one airway for takeoff and one airway for landing at the points chosen for the start 
and end of the route. 
 
 
 
In the next sections, we present the Dijkstra and Ford
arcs of the graph. 
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membership functions of the subgraphs T 1 and T 2, respectively; 
min : the supreme value of the minimum (intersection), that is, the largest degree of pertinence that can

 (v) membership functions. 

solution is given by: 

 

This makes the problem difficult to solve because, besides having to enu- merating all the solutions, comparing

In this section, we present the considerations on the PP-IoD fuzzy problem, with parallel airways to landways,
tioned, the topological architecture of the airways used in this work is based on the models

and Svaigen et al (6). The Figure 2 and the Figure 2 exemplifies the considered airway architecture.
overlapping airways, as shown in Figure 2. In this architecture,

cific airways to avoid collisions with other drones during flight, for example. Figure 2 classifies the routes
where drone flight is prohibited, such as airports and government buildings. This airway format helps protect private airways

Still regarding the architecture of the airways, according to
 health, life saving and search missions. It is worth noting that when considering this airway 

architecture and the UAV path planning problem, there are no obstacles as the ground routes are free of them
The airways are represented through graphs, where each layer (airway)

1 presents the characteristics that differentiate the UAV path plan
in this paper the airways are parallel to landways and are free 

IoD fuzzy and traditional PP are described as follows. 

collision-free path concerning a given origin-destination pair, while in PP

Winds and temporary obstructions can occur in the airways, such as the pres- ence of animals (e.g., birds) are modeled through 
Roads Determine where airways can pass. Helps to share and coordinate the drone access

can share the same airspace for different applications. 

any direction and any altitude, while in PP-IoD, drones must follow the airways altitudes and 

IoD fuzzy, we consider uncertanties in the costs of the arcs that are modeled through the theory of fuzzy sets, which a
path from a given origin to a given destination, while in the 

and a single shortest path is obtained, regardless of the method used. 

In this work, the IoD is composed of a set of drones D, a single ZSP that coordinates
their connections. 

similar to a real urban road scenario. A graph G = (N, E), where N represents the set of airway points(nodes) and 
n1, n2 ∈ N . 

has an origin and a destination on the route. Thus, it is assumed that there is one airway 
points chosen for the beginning and the end of the route. 
ZSP: responsible for coordinating the set of drones D and send the infor- mation of the path to be followed by each drone, since it is offline 

by the graph G and their altitude, so if we have n overlapping airways, we have that each one is 
 (Gn, hn), where h1, h2, h3, · · · , hn are the altitudes. In the 

ified. It is assumed that there is one airway for takeoff and one airway for landing at the points chosen for the start 

In the next sections, we present the Dijkstra and Ford-Moore-Bellman algo- rithms adapted for the case where there

and Linnyer Beatrys Ruiz Aylon, An approach to the uav path planning problem 

can be obtained from the set resulting 

comparing them makes the problem NP -

landways, considering uncertainties. As 
models of airways parallel to land ways 

exemplifies the considered airway architecture. 
architecture, drones can change altitude using 

routes into public and private as there 
where drone flight is prohibited, such as airports and government buildings. This airway format helps protect private airways, so it can 

to Bine et al (13), it is important to 
It is worth noting that when considering this airway 

them (here we are not considering 
(airway) is a graph and there are links 

1 presents the characteristics that differentiate the UAV path plan- ning in IoD fuzzy from 
 from static obstacles. 

destination pair, while in PP-IoD, the goal is to finding a 

ence of animals (e.g., birds) are modeled through 
to share and coordinate the drone access to 

IoD, drones must follow the airways altitudes and 

IoD fuzzy, we consider uncertanties in the costs of the arcs that are modeled through the theory of fuzzy sets, which allows, in 
 traditional PP the costs are classical 

, a single ZSP that coordinates the drones, 

represents the set of airway points(nodes) and E is the set of air 

has an origin and a destination on the route. Thus, it is assumed that there is one airway for takeoff and one for 

mation of the path to be followed by each drone, since it is offline 

overlapping airways, we have that each one is 
 scenario considered, the takeoff and 

ified. It is assumed that there is one airway for takeoff and one airway for landing at the points chosen for the start 

there are uncertainties in the costs the 

approach to the uav path planning problem in the internet of drones 



Dijkstra’s algorithm for the optimal path problem 
Deng et al (14), which generalizes it to obtain shortest
that this algorithm finds the shortest fuzzy path between an origin and a destination, and to obtain the paths for each of the drones considered in 
the IoD context, we adapt it to find multiple paths,
 
Algorithm 1 Dijkstra Fuzzy. 
 

 
 
Ford-Moore-Bellman algorithm for the optimal path 
classical Ford- Moore-Bellman algorithm (33). The proposed algorithm is iterative, having as 
costs of all paths found in the previous iteration with
concept of path dominance of Okada and Soper (30
Soper relation can present, between two nodes, more than one non
 
Algorithm 2 Ford-Moore-Bellman Fuzzy. 
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problem with uncertainty: The adaptation of the Dijkstra algorithm used in this work is authored by 
shortest fuzzy paths based on the graded mean integration representation method. It is worth noting 

between an origin and a destination, and to obtain the paths for each of the drones considered in 
paths, considering that the drones have different origins and destinations.

path problem with uncertainty: The algorithm proposed by Hernandes 
. The proposed algorithm is iterative, having as a stopping the number

with respect to the current iteration. In this algorithm, for the construction of the solution set, the 
30), then each path receives a label so that it is at the end of

two nodes, more than one non-dominated path between two nodes. 
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the Dijkstra algorithm used in this work is authored by 
graded mean integration representation method. It is worth noting 

between an origin and a destination, and to obtain the paths for each of the drones considered in 
different origins and destinations. 

 

The algorithm proposed by Hernandes (15) is based on the 
number of iterations or the non-changing 

for the construction of the solution set, the 
ives a label so that it is at the end of the algorithm, since the Okada and 

, 2023 



 
 
:cost of the path between nodes 1 and i,with label k at iteration it; 
 
UAV Path Planning sob uncertainties 
 
Experimental Results and Analysis: In this section we present the results obtained from the implementation of the Dijkstra and Ford-Moore-
Belman algorithms considering uncertainties in the arc costs, described previously. Both algorithms were implemented in Matlab R2020b software 
on a Lenovo, Core I7 notebook. The costs on the arcs were modeled using triangular fuzzy numbers. The data for the computational tests was 
obtained from the RioBuses dataset. RioBuses dataset had its data col- lected from the public transport system in Rio de Janeiro, Brazil. The 
dataset used was collected on October 1, 2014 in the simulations presented in Section. 6.1 and Section 6.2. The area used is part of the 
neighborhood of Ipanema beach, Rio de Janeiro, Brazil, as illustred in Figure 6.1. The data contained in RioBuses are real-time position data 
reported by buses, updated every minute, from the city of Rio de Janeiro, Brazil. The file is CSV, containing the date, time(24h format), bus ID, 
bus line, latitude, lon- gitude and speed of more than 12.000 buses (https://crawdad.org/coppe-ufrj/ RioBuses/20180319/RioBuses/index.html). In 
order to obtain input data for the algorithms used in this work, latitudes and longitudes were transformed into distances, and later they were 
fuzzified into fuzzy triangular numbers. Right and left spreads were chosen at random. 
 
Simulation 1: The first computational simulation performed was solved using the graph presented in Figure 6.1. 
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Fig. 5 Ipanema neighborhood, Rio de Janeiro, Brazil 
 
 
A graph of the main roads was generated to create the simulation of routes and airways, illustrated in Figure 6.1. We consider an airway parallel to 
the landway (this data is for the bus network). In this case, we consider one airway and 10 drones. The nodes of 
16  

 
 

Fig. 6 Graph of Ipanema (13) 
 
the graph representing the region illustrated in the Figure 6.1 were arbitrar- ily enumerated in order to obtain the paths for each drone in the 
computer simulations. The graph representing the chosen region has 59 nodes and 96 arcs. The origins and destinations of each drone were 
randomly chosen and are shown in Table 2. 
 

Table 2 Origins and destinations for each UAV 
 

Origin node Destination node 
1 59 
2 38 
6 51 
8 55 
9 30 
16 50 
19 49 
40 2 
47 7 
56 18 

 
We consider the directed network (with only one direction), from the algo- rithms fuzzy Dijkstra and fuzzy Ford-Moore-Bellman, the optimal paths 
were obtained. It is worth noting that the Dijkstra algorithm proposed by (14) uses the graded mean integration representation method, and therefore, 
finds a sin- gle path between the origin and destination, while the Ford-Moore-Bellman algorithm considers the fuzzy form in the costs of the arcs 
during the entire resolution process and finds non-dominated solutions (here we can have more than one optimal path between a given origin-
destination pair). Table 3 presents the optimal paths obtained by Dijkstra’s algorithm adapted for the fuzzy case. 
 
 

Table 3 Paths obtained by Dijkstra’s Fuzzy algorithm.  
 
Path 

 
Path Cost 

1 → 2 → 3 →4→6→13→59 1.372, 8m 
2→3→4→6→13→59→28→37→44→43→38 4.682, 5m 
6→13→59→28→37→44→51 1.775, 7m 
8→11→24→26→39→42→53→54→55 3.923, 6m 
9→10→25→58→40→39→38→37→44→51→50→49→48→34→33→32→19→20→21→30 4.157, 8m 
16 →4→6→13→59→28→37→44→51→50 3.250, 9m 
19→20→21→30→35→46→49 1.716, 9m 
40→39→38→37→44→51→50→49→48→34→33→32→19→18→1→2 2.147, 1m 
47→33→32→19→18→1→2→3→4→6→7 2.202m 
56→57→51→50→49→48→34→33→32→19→18 1.198, 6m 
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Table 4 shows the non-dominated paths obtained from the Ford-Moore- Bellman algorithm adapted for the fuzzy case. In order to compare the 
results obtained by both algorithms in the fuzzy version, we use the classic Ford-Moore-Bellman algorithm to obtain the short- est paths for the same 
origin-destination pairs that we use in the Dijkstra Fuzzy and Ford-Moore-Bellman Fuzzy algorithms. It is worth mentioning that in the classic 
versions, the Dijkstra and Ford-Moore-Bellman algorithms obtain the same shortest paths, what differs is the iterative process of each one. The Table 
5 presents the shortest paths for each origin-destination pair of each drone. 
 

Some relevant considerations from the paths obtained by both algorithms in the Simulation 1 are described below. 
 

 Analyzing the origin-destination pair (9, 30), we have that the Ford-Moore- Bellman algorithm finds 3 non-dominated paths for it, which can 
be important when dealing with real situations and applications, because we can consider 3 drones in this origin-destination pair (obviously, 
we are con- sidering that collisions are avoided through sensors of the drones themselves or through helical movements (34)). 

 Still regarding the origin-destination pair (9, 30), practical applications such as delivery via drones, can benefit from this type of solution, 
choosing the one that best fits the context considered. 

 The use of two algorithms that address uncertainty differently is important for comparisons between the solutions obtained, as well as to 
provide more solution options to the decision maker when dealing with situations where a single path must be chosen, for example. 

 The use of fuzzy numbers makes it possible to model uncertainties that are difficult to predict, such as travel time from origin to destination, 
since it can be affected by conditions difficult to predict. 

 Comparing the results obtained by the Dijkstra and Ford-Moore-Bellman algorithms in the fuzzy versions with the classic Ford-Moore-
Bellman algo- rithm, regarding the path costs, the paths obtained by the Dijsktra Fuzzy algorithm for each origin-destination pair of each 
drone is the closest to classic shortest paths. On the other hand, the results obtained by the Ford-Moore-Bellman Fuzzy algorithm present, in 
some cases, a set of non- dominated solutions, making it possible to choose between any of them, depending on the context and application 
in which the drones are inserted. 

 

Table 4. Paths obtained by the Ford-Moore-Bellman Fuzzy algorithm. 
 

Path Path Cost 
 

1 → 2→ 3→ 4→ 5→ 6→ 13→ 59 (1.372, 8, 35, 49) 
2 → 3 → 4→ 5→ 6→ 13→ 59→ 28→ 37→ 44→ 43→ 38 (4.679, 2, 55, 77) 
2 → 3 → 4→ 5→ 6→ 13→ 59→ 28→ 37→ 44→ 43→ 42 → 38 (4.679, 2, 60, 84) 
6 → 13 → 59 →28 →37 →44 →51 (1.773, 7, 30, 42) 
8 → 11 → 24 → 26 → 39 → 42 → 53 → 54 → 55 (3.920, 9, 40, 56) 
9 → 10 → 25 → 58 → 40 → 39 → 38 → 37 → 44 → 51 → 50 → 49 → 48→ 34 → 31 → 20 → 21 → 30 (4.159, 85, 119) 
9 → 10 → 25 → 58 → 40 → 39 → 38 → 37 → 44 → 51 → 50 → 49 → 48→ 34 → 33 → 32 →19 →20→ 21→ 30(4.151, 4, 95, 133) 
9 → 10 → 25 → 58 → 40 → 39 → 38 → 37 → 44 → 51 → 50 → 49 → 48→ 34 → 33 → 32 →31 →20→ 21→ 30(4.156, 1, 95, 133) 
16 → 4 → 5 → 6 → 13 → 59 → 28 → 37 → 44 → 51 → 50 (3.247, 9, 50, 70) 
19 → 20 → 21 → 30 → 35 → 46 → 49 (1.904, 4, 25, 35) 
40 → 39 → 38 → 37 → 44 → 51 → 50→ 49 →48 →34→ 33→32→19→18→1→2 (2.142, 1, 75, 105) 
47 → 33 → 32 → 19 → 18 → 1 → 2→ 3 →4 →5→ 6→7 (2.198, 6, 55, 77) 
56 → 57 → 51 → 50 → 49 → 48 → 34→ 33 →32 →19→ 18 (1.195, 2, 50, 70) 
 

Table 5.  Paths obtained by classical Ford-Moore-Bellman algorithm. 
 

Path Path Cost 
1 → 2 → 3 →4→6→13→59 1.370, 8 
2→3→4→6→13→59→28→37→44→43→38 4.679, 2 
6→13→59→28→37→44→51 1.773, 7 
8→11→24→26→39→42→53→54→55 3.920, 9 
9→10→25→58→40→39→38→37→44→51→50→49→48→34→33→32→19→20→21→30 4.151, 4 
16 →4→6→13→59→28→37→44→51→50 3.247, 9 
19→20→21→30→35→46→49 1.714, 9 
40→39→38→37→44→51→50→49→48→34→33→32→19→18→1→2 2.142, 1 
47→33→32→19→18→1→2→3→4→6→7 2.198, 6 
56→57→51→50→49→48→34→33→32→19→18 1.195, 2 

 
Simulation 2: In this case, we consider 2 airways, one with 100 meters of altitude and the other with 250 meters of altitude and 15 drones, being 
10 drones on airway 1 and 5 drones on airway 2. The origins and destination for drone 1 to 10 are the same as in Table 2 and for the other drones 
they follow in Table 6. 
 

Table 6 Origins and destinations for each UAV in the airway 2. 
 

Origin node Destination node 
65 119 
75 115 
80 105 
82 111 
115 97 

 

The Table 7 presents the optimal paths obtained by Dijkstra’s Fuzzy algorithm. 
 
 

Table 7 Paths obtained by Dijkstra’s fuzzy algorithm.  
Path Path Cost 
65 → 66→ 73→ 119 952, 6857 
75→81→82→119→88→97→104→103→102→113→114→115 4.032, 8 
80→81→90→95→106→105 1.485 
82→119→88→97→104→111 1.702, 3 
115→116→117→112→103→98→97 1.546, 2 
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The Table 8 shows the non-dominated paths obtained from the Ford- Moore-Bellman Fuzzy algorithm for the drones in airway 2. In this case, 
for the origin-destination pair 115-97, the adapted Ford Moore Belman algorithm obtained two optimal paths, called non-dominated. For origin-
destination pairs where there is more than one optimal path, in a real context, for example delivery of goods, both paths can be used by different 
 

Table 8 Paths obtained by the Ford-Moore-Bellman Fuzzy algorithm . 
 

Path Path Cost 
65 → 66→ 73→ 119 (951, 6857, 15, 21) 
75→81→82→119→88→97→104→103→102→113→114→115 (4.029, 2, 55, 77) 
80→81→90→95→106→105 (1.483, 3, 55, 77) 
82→119→88→97→104→111 (1.700, 7, 25, 35) 
115→116→117→112→103→98→97 (1.544, 2, 30, 42) 
115→116→117→112→103→102→98→97 (1.544, 2, 35, 49) 

 
drones, but not at the same time, since most arcs are the same. An alternative is to schedule the drones to travel on these paths at different times so that 
there is no collision, given that in this work we approach the UAV path planning 3D offline. It is worth mentioning that our approach considers that 
drones have different origins and destinations, so the suggestion described above applies in cases where more than one drone with the same 
origin-destination pair is considered. The Table 9 presents the shortest paths obtained by classical Ford-Moore- Bellman algorithm. 
 

Table 9 Paths obtained by classical Ford-Moore-Bellman algorithm. 
 

Path Path Cost 
65 → 66→ 73→ 119 951, 6857 
75→81→82→119→88→97→104→103→102→113→114→115 4.029, 2 
80→81→90→95→106→105 1.483, 3 
82→119→88→97→104→111 1.700, 7 
115→116→117→112→103→98→97 1.544, 2 

 
Comparing the path costs obtained by the Dijkstra and Ford-Moore- Bellman Fuzzy algorithms with the classic Ford-Moore-Bellman algorithm, in 
this simulation the results obtained by the Ford-Moore-Bellman Fuzzy algo- rithm, (considering the modal value), is the closest to the results of 
the classic case. However, the results obtained by the Dijkstra Fuzzy algorithm are very close to the classic one, this shows the efficiency of both 
algorithms in the fuzzy form. 
 
Final Considerations: This paper addresses the UAV path planning problem in IoD considering uncertainties in the costs of arcs, with airways 
parallel to landdways. Two clas- sical and widely used algorithms for the shortest path problem were used with adaptations for the case where there 
are uncertainties, such as the cost in the 
 
The main focus of this work was to show that fuzzy theory models uncer- tain or imprecise information efficiently and that classical algorithms can 
be adapted in different ways, obtaining interesting solutions, especially from the point of view of practical applications, such as drone delivery, 
since in general we find a set of non-dominated solutions (optimal paths, in this case) and not just one solution in the case of the Ford-Moore-
Bellman Fuzzy algorithm. The Dijkstra and Ford-Moore-Bellman algorithms have been used since their propositions and different variations for 
both are found in the literature, not least, the use of fuzzy theory makes it possible to consider uncertainties, which are inherent to the problem 
studied in this article. In this way, the combination of classic and well-established algorithms in the literature with the fuzzy theory, allows us to 
obtain promising and interesting solutions that can be used, for example, in the long-awaited drone delivery. Considering a scenario where 
delivery and others applications by UAVs are possible, airspace will be different from the current one, and UAV path planning problem will be 
indispensable. Therefore, this work contributes to the state of art introducing the PP-IoD fuzzy problem. As future work, it could be interesting to 
focus in consider how to avoid collisions between drones as well as minimize the amount of energy used to travel a given path in an IoD fuzzy 
environment; Use temporal graphs to prevent different drones from sharing the same arcs in cases where there is more than one path to the same 
origin-destination pair; Use mixed integer linear programming models to build a multi-objective optimization model for PP-IoD fuzzy and solve it 
using some solver. 
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