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ARTICLE INFO  ABSTRACT 
 

We present the final result of an applied geometry research as an algorithm for interpolation of in 
in 𝑁-dimensional sparse grids. The method is based on divide and conquer approach and a 
“golden rule” chosen for optimization of the problem in specific and general terms, showing good 
results in a much shorter time. The main steps are Mapping-Triangulation-Interpolation, and we 
present the results from its application to the problem of estimating age and mass of stelar 
clusters. 
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INTRODUCTION 
 
Several problems in applied mathematics involve the use of tables and non-continuous data. In the measurements and information taking 
environment, the final data set rarely represents a continuous function, although it is usually represented in n-dimensional space. However, 
despite these characteristics that difficult the use of calculus tools, interpolation of points in these sparse, non-continuous and n-dimensional sets 
it is one of the needs of many applications. This work was motivated by the need that comes from estimating the ages of stars belonging to open 
clusters. The process of determining the ages and masses of stars necessarily goes through an interpolation step in the HR diagram (or colour-
magnitude diagram – CMD). This important tool of astrophysics was first proposed by astronomers E. Hertzsprung and H. N. Russel in 1908 
(Hertzprung 1908). The HR diagram graphically presents the luminosity versus the effective temperature of the stars in a star cluster. Stars of 
different ages and masses occupy different positions due to stellar evolution theories.  With observational data on the magnitudes of a given star 
at certain wavelengths, we can compare it to numerical and evolutionary results, which leads us to a good estimate of ages and masses. In this 
work, we use the theoretical data provided by PARSEC1, whose tracks (Bressan et al. 2012) are computed for a scaled-solar composition and 
following specific metallicity relations. They also provide evolutionary tracks. 
 
Traditionally, for a single star, it is enough to plot its data along the curves provided by PARSEC and proceed with an interpolation process, 
which was often done visually. However, current stellar databases present information with a high degree of accuracy for an immense number of 
stars. An actual example is the GAIA mission2, a European space initiative providing astrometry, photometry, and spectroscopy of more than 
1000 million stars in the Milky Way (Gaia 2017). The Gaia Archive contains deduced positions, parallaxes, proper motions, radial velocities, and 
brightnesses. An example of application is provided by Hetem & Gregorio-Hetem (2019), who used this methodology to estimate the ages of 
stars in 50 clusters. Figure 1 presents a representation of PARSEC isochrones and some stars belonging to cluster Collinder 205. This huge 
availability of data leads current astrophysics projects to deal with tens of thousands of stars. Thus, it is necessary to use more precise and 
automated tools that allow us to speedup the process of estimating ages and masses. 

                                                 
1 Version v1.2S + COLIBRI PR16 of PARSEC models available on http: //stev.oapd.inaf.it/cgi-bin/cmd 
2 https://gea.esac.esa.int/archive/ 
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The purpose of this work is to present the idea behind the 
allows us to make estimates via interpolations in sparse grids with speed and precision.
 

Figure 1. PARSEC isochrones and some stars belonging to cluster Collinder 205. The legend provi

MATERIALS AND METHODS

This study assumes that we have a sparce set of points
allow us to represent them in two different spaces, namely
 

  𝜆
ெ = 𝑝(𝑥, 𝑦, 𝑧 … ) ⊂ Λ

𝛾ெ = 𝑝(𝐴, 𝐵, 𝐶 … ) ⊂ Γ
ൠ Λ ∪ Γ = Ω  

 
where 𝑀is the number of points in 𝑁-dimensional spaces, and each has the properties set 
necessarily equal but are positive integers > 0 and
subsets establish a relationship between the two spaces
approximations of the properties(𝐴, 𝐵, 𝐶, … ) for a point
want to establish a Jacobian transformation matrix to perform the translation from (
However, as, in principle, the transformations Λ →
use interpolation techniques. 
 
The obvious (but not the most computationally efficient) way is to calculate the di
closest to 𝑃, or find the set 
 
𝑇௉ = ൛ൣ𝜆ଵ, 𝜆ଶ, 𝜆ଷ ⋯ , 𝜆ே౻

൧ห𝛿(𝜆୧, 𝑃) < 𝛿൫𝜆ே౻ାଵ, 𝑃൯

 
where 𝛿(𝜆୧, 𝑃) denotes the distance of element 𝑖 of 
to) 𝑃 and from which the properties (𝐴, 𝐵, 𝐶, … ) can be interpolated.
computationally expensive. For the case where the calculation must be repeated for many external points 
expensive. This fact led us to look for "divide and conquer" alternatives.
"Divide and conquer" can be implemented in a myriad of ways, all of which will already have a time benefit. We, however, sear
methodology that was the most effective in terms of both geometry/statistics applied to the problem we want to solve.
"golden rule". 
 
The algorithm that we propose follows the following steps (Figure 2):
 
1. Previously, we divided the Λ space into a given number of continuous contiguous regions 
borders. The choice of criteria for this segmentation must strictly follow the golden rule. This is the mapping step.
2. Each region 𝑅 is subdivided into a set of minimal polyhedra 
for their borders. This is the triangulation step. 
 
2. For each external point 𝑃, we look for the region 
 
∃𝑅௉|𝑃 ∈ 𝑅௉ 
 
where the operator “∈” means "geometrically contained"
contained in any region 𝑅, it is considered not interpolated.
 
3. Next, we find the minimal polyhedron 𝑇௉ in 𝑅௉
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The purpose of this work is to present the idea behind the MaTISG algorithm, which combines statistics, algebra and geometry in a tool that 
allows us to make estimates via interpolations in sparse grids with speed and precision. 

 
PARSEC isochrones and some stars belonging to cluster Collinder 205. The legend provi

MATERIALS AND METHODS 

This study assumes that we have a sparce set of points 𝑝ெ = 𝑝(𝑥, 𝑦, 𝑧 … , 𝐴, 𝐵, 𝐶 … ) in 𝑁-dimensional space
allow us to represent them in two different spaces, namelyΛand Γ:  

 

dimensional spaces, and each has the properties set (𝐴, 𝐵, 𝐶 … ) ⊂
and 𝑁ஃ + 𝑁୻ = 𝑁. The vector𝜃௜ = [𝑥௜ , 𝑦௜ , 𝑧௜ … ] ∈ 𝜆ெrepresents the position of point

subsets establish a relationship between the two spacesΛand Γ, and can be treated as a functionΛ → Γ. Suppose now that we want to obtain 
for a point𝑃 ∈ Ωbut𝑃 ∉ 𝑝ெ, which can be interpreted as an external point or observation point. 

want to establish a Jacobian transformation matrix to perform the translation from (𝑥௉ , 𝑦௉, 𝑧௉ …) to (𝐴௉, 𝐵௉ , 𝐶

→ Γ are not formaly known, nothing can be said about its characteristics, and we are forced to 

The obvious (but not the most computationally efficient) way is to calculate the distances between 𝑝ெand 

൯ ൟ   

of 𝑝ெ to 𝑃. The 𝑇௉ points represent the vertices of a polyhedron that contains (or is the closest 
can be interpolated. If the set 𝑝ெ is relatively large, due to the distances evaluation this step is 

sive. For the case where the calculation must be repeated for many external points 
expensive. This fact led us to look for "divide and conquer" alternatives. And it is at this point that the motivation of this work is outlined.
"Divide and conquer" can be implemented in a myriad of ways, all of which will already have a time benefit. We, however, sear
methodology that was the most effective in terms of both geometry/statistics applied to the problem we want to solve.

The algorithm that we propose follows the following steps (Figure 2): 

space into a given number of continuous contiguous regions 𝑅 with no points in common, except for their 
borders. The choice of criteria for this segmentation must strictly follow the golden rule. This is the mapping step.

is subdivided into a set of minimal polyhedra 𝑇 (like triangles in 2D or tetrahedron in 3D), with no points in common, except 

, we look for the region 𝑅௉ that contains it, 

  

means "geometrically contained", used here so that we are not confused with the "∈" operator applied to sets. If 
, it is considered not interpolated. 

௉that contains 𝑃, or 
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ithm, which combines statistics, algebra and geometry in a tool that 

 
PARSEC isochrones and some stars belonging to cluster Collinder 205. The legend provides the age scale in years. 

dimensional space Ω. The properties of these points 

 (1) 

Γ. The dimensions𝑁ஃand𝑁୻are not 
represents the position of point𝑖. The two 

Suppose now that we want to obtain 
, which can be interpreted as an external point or observation point. We 

𝐶௣ …), or Λ௉ → Γ௉ (Weisstein 2018). 
are not formaly known, nothing can be said about its characteristics, and we are forced to 

and 𝑃 in Λ and look for the 𝑁ஃpoints 

  (2) 

points represent the vertices of a polyhedron that contains (or is the closest 
is relatively large, due to the distances evaluation this step is 

sive. For the case where the calculation must be repeated for many external points 𝑃, it becomes more and more 
And it is at this point that the motivation of this work is outlined. 

"Divide and conquer" can be implemented in a myriad of ways, all of which will already have a time benefit. We, however, searched for the 
methodology that was the most effective in terms of both geometry/statistics applied to the problem we want to solve. We call this choice the 

with no points in common, except for their 
borders. The choice of criteria for this segmentation must strictly follow the golden rule. This is the mapping step. 

trahedron in 3D), with no points in common, except 

  (3) 

" operator applied to sets. If 𝑃 is not 

triangulation interpolation of sparce grids: the matisg algorithm 



∃𝑇௉ ⊂ 𝑅௉|𝑃 ∈ 𝑇௉ 
 
4. We interpolate the properties 𝛾 = (𝐴, 𝐵, 𝐶 … ) with the vertices of the polyhedron 
 
𝛾 = 𝑓(𝜆ଵ, 𝜆ଶ, 𝜆ଷ ⋯ , 𝜆ே౻

) 
 
where 𝑓: Λ → Γ is an interpolation function. This is the interpolation step. The interesting work of Goodin, 
good discussion on this field. The main point of performance gain is in the fact that checking if a point is contained within a previously stipulated 
polyhedron is much faster than calculating all the distances between 
that are outside the interpolation area are immediately recognized in step 1, which, in the case of distance checking, can on
trying all possibilities. 
 
Application in the interpolation of ages and masses of stars
 
Estimating the masses and ages of stars is an important task in astrophysics research, especially for those who study star cl
stars belonging to a cluster, their ages and masse
(Hetem & Gregorio-Hetem 2007).  In this work, we used the theoretical data provided by PARSEC, whose data include color, magnitude, age, 
and mass obtained by numerical models. With these data, one can generate the colour
curves and regions define classes of stars and other astrophysical objects. The PARSEC data are obtained in subsets of pre
their query and are composed of a series of points not uniformly spaced regarding the other properties. Therefore, each PARSEC p
represented as 
 
𝑝ெ = {𝜆(𝑐, 𝑚), 𝛾(𝛼, 𝜇)} 
 
where 𝑐 represents colour, 𝑚, magnitude, 𝛼, age and 

 

Figure 2. Explanation of the application of the 
property or rule, the “golden rule”. The outer point that we want to fit is represented by a blue star. (b) Mapping step: eac

determines a polygon that can share points with another region only on its edge. (c) Triangulation step: each polygon is subdivided with 
triangulation method. (d) This is the interpolation step: window of the subarea with the triangle containing the external poi

Figure 3. PARSEC original data. Color-magnitude diagram or HR diagram, or 
obtained from the magnitudes of the GAIA 𝑮

Each point belongs to an isochronous curve (same age) and represents a mass on this curve, that is, the 
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with the vertices of the polyhedron ൣ𝜆ଵ, 𝜆ଶ, 𝜆ଷ ⋯ , 𝜆ே౻
൧, performing

  

is an interpolation function. This is the interpolation step. The interesting work of Goodin, McRae & Seinfeld (1979) presents a 
The main point of performance gain is in the fact that checking if a point is contained within a previously stipulated 

polyhedron is much faster than calculating all the distances between the points. Another important advantage of this method is that those points 
that are outside the interpolation area are immediately recognized in step 1, which, in the case of distance checking, can on

cation in the interpolation of ages and masses of stars 

Estimating the masses and ages of stars is an important task in astrophysics research, especially for those who study star cl
stars belonging to a cluster, their ages and masses are estimated by comparing with the intrinsic colour points, provided by theoretical models 

In this work, we used the theoretical data provided by PARSEC, whose data include color, magnitude, age, 
rical models. With these data, one can generate the colour-magnitude diagram (CMD), or H

curves and regions define classes of stars and other astrophysical objects. The PARSEC data are obtained in subsets of pre
ir query and are composed of a series of points not uniformly spaced regarding the other properties. Therefore, each PARSEC p

 (6) 

, age and 𝜇, mass (Figure 3). 

Explanation of the application of the MaTISG algorithm. (a) A sparse set of points is divided into regions according to some 
property or rule, the “golden rule”. The outer point that we want to fit is represented by a blue star. (b) Mapping step: eac

s with another region only on its edge. (c) Triangulation step: each polygon is subdivided with 
triangulation method. (d) This is the interpolation step: window of the subarea with the triangle containing the external poi

 
magnitude diagram or HR diagram, or 𝚲=(𝒄, 𝒎) space. The abscissa axis represents the color, 

𝑮𝑩𝑷 and 𝑮𝑹𝑷 observations. The coordinate axis represents the GAIA 
Each point belongs to an isochronous curve (same age) and represents a mass on this curve, that is, the 

absolute magnitudes 
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  (4) 

൧, performing 

  (5) 

McRae & Seinfeld (1979) presents a 
The main point of performance gain is in the fact that checking if a point is contained within a previously stipulated 

the points. Another important advantage of this method is that those points 
that are outside the interpolation area are immediately recognized in step 1, which, in the case of distance checking, can only be identified after 

Estimating the masses and ages of stars is an important task in astrophysics research, especially for those who study star clusters. Considering the 
s are estimated by comparing with the intrinsic colour points, provided by theoretical models 

In this work, we used the theoretical data provided by PARSEC, whose data include color, magnitude, age, 
magnitude diagram (CMD), or H-R Diagram, whose 

curves and regions define classes of stars and other astrophysical objects. The PARSEC data are obtained in subsets of pre-established ages 𝑎௜in 
ir query and are composed of a series of points not uniformly spaced regarding the other properties. Therefore, each PARSEC point can be 

 
algorithm. (a) A sparse set of points is divided into regions according to some 

property or rule, the “golden rule”. The outer point that we want to fit is represented by a blue star. (b) Mapping step: each region 
s with another region only on its edge. (c) Triangulation step: each polygon is subdivided with 

triangulation method. (d) This is the interpolation step: window of the subarea with the triangle containing the external point. 

. The abscissa axis represents the color, 𝒄, 
observations. The coordinate axis represents the GAIA 𝑴𝑮 magnitude, 𝒎. 

Each point belongs to an isochronous curve (same age) and represents a mass on this curve, that is, the 𝚪 = (𝜶, 𝝁) space. The units are 

, December, 2022 



Step 1 of the algorithm is performed by defining the regions 
the golden rule in this case stablishes that the polyhedral regions were defined by two PARSEC curves, one with one age and t
following age, and two straight line segments that join these curve
 
𝑅௝ = {𝜆௜|𝜆௜ ∈ 𝛼௝  ∨  𝜆௜ ∈ 𝛼௝ାଵ} 
 
For a set of 𝑚 ages, 𝑚 − 1 regions are obtained, and (Figure 4)
 
𝑅ଵ ∪ 𝑅ଶ ⋯ ∪ 𝑅௠ିଵ = 𝜆ெ 

Figure 4. Pairs of isochrones are used to create polygons in the HR diagram. The superposition we see around (0,0) is real and is the 
result of seeing a 2D proj

Step 2 of the algorithm consists of performing a Delaunay triangulation 
𝑄triangles 𝑇 whose vertices are associated to the age subsets 
 
𝑇௞ = {[𝜆ଵ, 𝜆ଶ, 𝜆ଷ]|𝜆௜ ∈ 𝑅௝} 
 
Again, is valid 
 
𝑇ଵ ∪ 𝑇ଶ ⋯ ∪ 𝑇ொ = 𝑅௝. 
 
 
For each star in the cluster under study, we used the position in CMD as the coordinate pair given by its colour and magnitud
the same units as PARSEC points, or 
 
𝑃௜ = [𝑐௜ , 𝑚௜]. 
 
With these coordinates in the CMD, we look for the region/polyhedron that 
star is considered non-interpolated. Next, in case of success in previous step, we look for which of the triangles associat
𝑅௝contains 𝑃௜ . This search will always return a positive result, since 
[𝜆ଵ, 𝜆ଶ, 𝜆ଷ] where 𝑃௜ ∈ 𝑇௉ whose vertices have the properties age and mass, and we can perform the interpola
 
𝑃௜ ∈ 𝑇௉ ⇒ 𝛾 = 𝑓(𝜆ଵ, 𝜆ଶ, 𝜆ଷ). 
 
Due to the nature of the theoretical PARSEC curves, the curves can define a surface that folds over itself, as can be seen in
4. As a result, there will be stars contained in more than one triangle but
researcher must provide another astrophysical criterion to choose the most appropriate solution.

RESULTS FROM EXPERIMENTAL PROCEDURES

 
Figure 5 presents the result for a single star belonging to cluster 
Table 1 an extract of the results for the stars of this same cluster. A statistical view of the entire set of masses of these
shown in the histogram of Figure 6. Since we are dealing with 
estimate the execution times for different cases but for the same set of data.
analysis and made the same age and mass estimates 
calculation, b) triangulation for all points - 
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Step 1 of the algorithm is performed by defining the regions 𝑅 as the space between the curves containing two consecutive ages as regions. Thus, 
the golden rule in this case stablishes that the polyhedral regions were defined by two PARSEC curves, one with one age and t
following age, and two straight line segments that join these curves at their ends. Therefore, the vertices that define each region are given by

  

regions are obtained, and (Figure 4) 

  

 

 
Pairs of isochrones are used to create polygons in the HR diagram. The superposition we see around (0,0) is real and is the 

result of seeing a 2D projection of a 4D space (see text) 
 

Step 2 of the algorithm consists of performing a Delaunay triangulation (Delaunay 1934) in each region. The result of this step is a set of
whose vertices are associated to the age subsets 𝛼௝  and 𝛼௝ାଵof the region 𝑅௝. Formally 

  

  

For each star in the cluster under study, we used the position in CMD as the coordinate pair given by its colour and magnitud

  

With these coordinates in the CMD, we look for the region/polyhedron that 𝑃௜ ∈ 𝑅௝. In case no region containing 
Next, in case of success in previous step, we look for which of the triangles associat

. This search will always return a positive result, since 𝑃௜ ∈ 𝑅௝. The result of the previous step is the triangle 
whose vertices have the properties age and mass, and we can perform the interpola

  

Due to the nature of the theoretical PARSEC curves, the curves can define a surface that folds over itself, as can be seen in
4. As a result, there will be stars contained in more than one triangle but belonging to different regions. In these cases, the 
researcher must provide another astrophysical criterion to choose the most appropriate solution. 

RESULTS FROM EXPERIMENTAL PROCEDURES 

Figure 5 presents the result for a single star belonging to cluster Collinder 205 (Cantat-Gaudin & Anders 2020). We present in 
Table 1 an extract of the results for the stars of this same cluster. A statistical view of the entire set of masses of these

Since we are dealing with optimization in an interpolation method, it is extremely important to 
estimate the execution times for different cases but for the same set of data. We chose the Collinder 205 cluster as the target of this 
analysis and made the same age and mass estimates of the stars following three different paths: a) estimation via distance 

 without mapping via polygons, and c) the MaTISG algorithm. This comparison is 

et al., Mapping-triangulation interpolation of sparce grids: the matisg algorithm

aining two consecutive ages as regions. Thus, 
the golden rule in this case stablishes that the polyhedral regions were defined by two PARSEC curves, one with one age and the other with the 

s at their ends. Therefore, the vertices that define each region are given by 

  (7) 

  (8) 

Pairs of isochrones are used to create polygons in the HR diagram. The superposition we see around (0,0) is real and is the 

(Delaunay 1934) in each region. The result of this step is a set of 

  (9) 

  (10) 

For each star in the cluster under study, we used the position in CMD as the coordinate pair given by its colour and magnitude in 

  (11) 

. In case no region containing 𝑃௜  is found, the 
Next, in case of success in previous step, we look for which of the triangles associated with 

The result of the previous step is the triangle 𝑇௉ =

whose vertices have the properties age and mass, and we can perform the interpolation, once 

  (12) 

Due to the nature of the theoretical PARSEC curves, the curves can define a surface that folds over itself, as can be seen in Figure 
belonging to different regions. In these cases, the 

Gaudin & Anders 2020). We present in 
Table 1 an extract of the results for the stars of this same cluster. A statistical view of the entire set of masses of these stars is 

optimization in an interpolation method, it is extremely important to 
We chose the Collinder 205 cluster as the target of this 

of the stars following three different paths: a) estimation via distance 
without mapping via polygons, and c) the MaTISG algorithm. This comparison is 

triangulation interpolation of sparce grids: the matisg algorithm 



presented in Table 2. Obviously, these time measurement va
interpretation must be in comparative terms. 

Figure 5. Result for the interpolation of a star (in red) witn
The vertices of the triangle (in grey) are presented with their age and mass properties (M and T). The result for this star i

Table 1. Some results for mass and age obtained for the stars of the Collinder 205 cluster. The columns with indices "sup" and "inf"
represent the error estimates for the magnitudes, which were calculated using the minimum polygon of each star in the 

algorithm. The first column i

i 𝐥𝐨𝐠(𝒂𝒈𝒆) 
[year] 

𝐥𝐨𝐠(𝒂𝒈𝒆𝒔𝒖𝒑)

[year] 

681 6,522317697 0,021752303
240 6,704654896 0,170405104
585 7,602859704 0,096110296
553 6,883552052 0,116447948
145 6,675429071 0,023540929
389 7,168619955 0,007470045

1011 6,968770997 0,031229003
1009 7,117020278 0,059069722

 
 

Figure 6. Histogram with the mass distribution obtaine
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presented in Table 2. Obviously, these time measurement values are dependent on the hardware and software used, and their 
 

 

 
Result for the interpolation of a star (in red) witn𝒄 = 𝟏. 𝟒𝟓𝟖𝟑 mag and 𝒎 = 𝟓. 𝟖𝟑𝟐𝟓 mag from the Collinder 205 open cluster. 

The vertices of the triangle (in grey) are presented with their age and mass properties (M and T). The result for this star i
𝟏𝟎𝟔 years and mass=𝟎. 𝟗𝟖𝟐 solar masses. 

 
. Some results for mass and age obtained for the stars of the Collinder 205 cluster. The columns with indices "sup" and "inf"

represent the error estimates for the magnitudes, which were calculated using the minimum polygon of each star in the 
ithm. The first column is an identification of the star 

 
) 𝐥𝐨𝐠(𝒂𝒈𝒆𝒊𝒏𝒇) 

[year] 
𝒎𝒂𝒔𝒔 

[solar masses] 
𝒎𝒂𝒔𝒔𝒔𝒖𝒑

[solar masses]

0,021752303 0,045197697 0,749323931 0,000676069
0,170405104 0,005684896 0,749140534 0,000859466
0,096110296 0,301829704 1,147741542 0,001258458
0,116447948 0,008492052 1,09725381 0,00174619
0,023540929 0,073369071 0,748024808 0,001975192
0,007470045 0,168619955 0,747938932 0,002061068
0,031229003 0,093710997 0,747914475 0,002085525
0,059069722 0,117020278 0,947854265 0,002145735

Histogram with the mass distribution obtained for the cluster Collinder 205
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lues are dependent on the hardware and software used, and their 

 

mag from the Collinder 205 open cluster. 
The vertices of the triangle (in grey) are presented with their age and mass properties (M and T). The result for this star is age=𝟏𝟎. 𝟑𝟒 ×

. Some results for mass and age obtained for the stars of the Collinder 205 cluster. The columns with indices "sup" and "inf" 
represent the error estimates for the magnitudes, which were calculated using the minimum polygon of each star in the MaTISG 

𝒔𝒖𝒑 
[solar masses] 

𝒎𝒂𝒔𝒔𝒊𝒏𝒇 
[solar masses] 

0,000676069 0,049323931 
0,000859466 0,049140534 
0,001258458 0,008741542 
0,00174619 0,00325381 

0,001975192 0,048024808 
0,002061068 0,000938932 
0,002085525 0,047914475 
0,002145735 0,003854265 

 
d for the cluster Collinder 205 

, December, 2022 



Table 2. Estimates of running time of algorithms in cases direct distance calculation, triangulation for all points without mapping via 
polygons, and the MaTISG algorithm 

 
 algorithm time (s) 

a distance direct 114.52 
b only triangulation 3.31 
c MaTISG 0.98 

 

DISCUSSION AND CONCLUSION 

We concluded that using a divide and conquer technique chosen for optimization of the problem in specific and general terms, the "golden rule", 
allows us to achieve good results in a much shorter time. In particular, the presented algorithm proved to be more than 100 times faster than the 
traditional path (calculation of distances to all points). Critical details of this algorithm, such as polygon calculation, triangulation, and 
interpolation, are available in libraries of many programming languages. This makes it possible to implement it without major difficulties in a 
wide spectrum of applications. For problems that require interpolations in a large set of sparse points in a high number of dimensions, the 
MaTISG algorithm presents itself as a good alternative, being economical and efficient. 
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