Aplicação de aprendizado de máquina profundo para detecção por imagens De doenças em frutos do cacaueiro

International Journal of Development Research

Volume: 
11
Article ID: 
22009
7 pages
Research Article

Aplicação de aprendizado de máquina profundo para detecção por imagens De doenças em frutos do cacaueiro

Maria Eliana da Silva Holanda, Edson Magalhaes da Costa, Dhian Kelson Leite de Oliveira, Paulo Victor Cunha Lima, Esley Teixeira do Espirito Santo, Luiz Henrique Dias Ramos, Lucas Henrique Martins Soares, Ramon Campelo Ramos, Joaquim dos Santos Costa, Isadora Mendes dos Santos, Jakelyne Machado Lima Silva, Gilberto Nerino de Souza Júnior e Marcus de Barros Braga

Abstract: 

The state of Pará is the largest cocoa producer in Brazil, with 51% of national production, involving 26 thousand producers, generating 64 thousand direct and 225 thousand indirect jobs. However, diseases that affect this culture are responsible for high losses in yield. This study presents an approach based on deep learning to identify diseases that affect the cocoa culture. A public database with 4,389 fruit images was used, covering the diseases black pod rot and pod borer. The experiments using the techniques of data augmentation and convolutional neural networks (CNN) indicate an average accuracy of 95% in the images' classification. In this way, the present work aims to contribute effectively proposing a tool that can help in the improvement of the cocoa production chain in the state of Pará.

DOI: 
https://doi.org/10.37118/ijdr.22009.05.2021
Download PDF: