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ARTICLE INFO                                   ABSTRACT 
 
In this paper the mathematical model of disease-selective predation as proposed by Roy and 
Chattopadhyay [10] is considered to identify the true risk of selective predation where the 
predator can recognize the infected prey and avoids those during predation. Furthermore, the 
model is modified and find out the conditions of getting advantage of prey due to herd in 
diseases-selective model both numerically and analytically to review the risk factors. Finally, we 
observe that the risk of prey extinction in disease selective can be arrest in certain level due to 
herd behavior of prey. 
 
 
 
 
 

*Corresponding author 

 
Copyright ©2017, Bachchu and Alam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

 
 
 
 
 

INTRODUCTION 
 
In general, diseases either in prey or in predator plays an 
important role in the dynamics of a prey-predator system. In 
recent years researchers have taken several approaches to 
study this interesting phenomenon. Previously a good number 
of studies have shown that predators take disproportionate 
number of prey that are infected by parasites (see, Vaughn and 
Coble (Vaughn, 1975). Temple (1987), Holmes and Bethel 
(1972), discussed many examples in which the parasite 
changes the external features or behavior of the prey, so that 
infected prey are more vulnerable to predator. Infected prey 
sometimes choose such locations that are more accessible to 
predators; for example, infected fish or aquatic snails may live 
close to the water surface or snails may live on top of 
vegetation rather than under protective plant cover. Similarly, 
infected prey sometimes became weaker or less active, so that 
they are caught more easily by predator (Dobson, 1988). In a 
prey-predator model with disease in prey Anderson and May 
(Anderson, 1978), found that the pathogen tends to destabilize 
the prey-predator interactions and exhibits limit cycles when  

 

predation on infected prey is much and no reproduction in 
infected prey. Hadeler and Freedman discuss the situation 
where predator could only survive on the prey if some of the 
prey were more vulnerable due to disease. Freedman 
(Freedman, 1990), studied a predator-prey system in which 
some members of the prey population all the predators are 
subjected to infection by parasites, and obtained conditions for 
persistence of all populations and global stability of the 
positive equilibrium. Mukherjee (Mukherjee, 2014), analysed 
a generalized prey-predator system with parasite infection and 
obtained conditions for persistence and impermanence. 
Chattopadhyay and Arino (Yang, 1996), studied predator-prey 
system when predator eat infected prey and derived the 
persistence and extinction conditions and also determined the 
condition for Hopf bifurcation. Xiao and Chen (Xiao, 2001), 
modified the model of Chattopadhyay and Arino by 
introducing the delay term and studied the dynamics of the 
modified system. This is an alternative way of using 
phylogenetic similarity to assess disease risk which may arise 
from infected prey. Although this is not a direct example of 
predator-prey system, but it certainly sites an instance for 
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disease selective consumption. Now if the predator can 
recognize and avoid infected prey then this selection of 
predator may accrue the enhanced nutritional benifits of eating 
phylogenetically close prey while limiting risk of disease 
(Pfennig, 2000). Now, naturally a question arise, what will be 
the fate of the prey population if it becomes highly infected 
and its predator exhibits disease-selective predation? Will this 
prey population survive in this case? If not, then what 
restriction should be taken in order to overcome this situation? 
Roy and Chattopadhyay (Roy, 2005), introduced a 
mathematical model of disease-selective predation 
incorporating this concept. They considered a predator-prey 
system where the predator has specific choice regarding 
predation and it can recognize the infected prey and avoid 
those during predation. Recently, S.Alam (Freedman, 1983), 
introduced a mathematical model of risk of disease-selective 
predation in an infected prey-predator system and analyzed the 
effect of discrete time delay in the term involving the gestation 
of susceptible prey by the predator. In this paper, we have 
modified the disease-selective model as suggested by Roy and 
Chattopadhyay (2005), and Alam (2009), just incorporating 
square root term in the response function due to herd behavior 
of prey and analyze the model system in details. Here 
analytically we find out the conditions of disease free 
equilibrium point and stability conditions interior equilibrium 
point which is supported by numerical findings. Finally, we 
observe that the risk of prey extinction in disease selective can 
be arrest in certain level due to herd behavior of prey. 
 
Model for Diseases-Selective Predation under Herd of Prey 
 
In the information of the mathematical model for disease-
selective predation, the following assumptions are made: 
 

 The prey population is divided into two classes, 
namely, susceptible class (S) and infected class (I). The 
susceptible class follows logistic growth with intrinsic 
growth rate r and carrying capacity �1	 which is shared 
by the entire prey population (i.e. both susceptible and 
infected class). 

 Susceptible prey exhibits herd behavior to protect 
themselves from the predation. 

 Susceptible class becomes infected at a rate α and this 
transformation follows the law of mass action.  

 The infected prey population suffers a constant death 
rate β. 

 The predator (Y) is not solely dependent on this prey 
population for its food, i.e. the predator has some other 
sources of  food. Hence the predator is supposed to 
follow logistic growth with intrinsic growth rate R and 
carrying capacity �2. 

 Finally, it is assumed that the predators have some 
choice for their food and they are only consuming the 
susceptible group of prey population. 

 
Based on the above mentioned assumption we consider the 
model as: 
 
��

��
= �� �1

���

��
� �√�� ���, 

 
��

��
= ��� ��, 

 
��

��
= �� �1

�

��
� + ���√�.                           ……………(2.1) 

The basic model (2.1) takes the following dimensionless form: 
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With the re-scalling variables  
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Positive invariance of the system 
 
Let us put equation (2.1) in a vector form by setting  		x=
col(s,i,y)∈ �� 
 

�(�)= �

��(�)

��(�)

��(�)
�= �

�(1 � �) ���� ���√�
���� ���

��	�(1 �)+ ���√�

�.  

 
Where �:�� → �� and � ∈ �∞. The equation (2.2) becomes 
� = �(�) ,  with �(�)= ( �(�), �(�), �(�))∈ ��  and 

�(�)> 0	(�= 1,2,3). It is easy to cheek in the above 
quation that whenever choosing �(�)∈ ��  such that �� = 0, 
then ��(�) ��(�)= 0, �(�)∈ �� ≥ 0,(�= 1,2,3). Due to 
lemma (Yang et al. [18]) any solution of the above equation 
with �(�)∈ ��  , say �(�)= �(�,�(�)), such that �(�)∈ �� 
for all �> 0. 
 
1.2 Boundedness of solution 

 
Lemma 2.2.1 
 
If the initial condition of equation (2.2) satisfies 
 

�(�)+ �(�)≥ 1, � ∈ [ �,0], then either (i) 
�(�)+ �(�)≥ 1 for all �≥ 0 and therefore �→ ∞, 
(�(�),�(�),�(�)→ ��(1,0,0)) 
 

Or (ii) there exists a �� > 0 such that �(�)+ �(�)< 1 for all 
�> 0. Also if �(�)+ �(�)< 1,� ∈ [ �,0],		then 
�(�)+ �(�)< 1 for all �≥ 0.  
 
Lemma 2.2.2 
 
There is a  � > 0 such that for any positive solution (s(t), y(t), 
i(t)) of the system (2.2) �(�)< �  for large t, where � =
(����)(����)

�

�
 and �� ≤ ��. 

 

Proof of lemma 2.2.1  is routine work and hence omitted. 
 
Theorem 2.2.1 
 

The set � = {(�,�,�)∈ ��
�,+:� + �≤ 1,� ≤ � } is a global 

attractor in ��
�,+  and it is positively invariant. 

 
Proof: First assume that ( �(�), �(�), �(�))∈ �. Then 
lemma 2.2.1 implies that �(�)+ �(�)< 1 for all �> 0 and also 
by the lemma 2.2.2 we know that �(�)< �  for large t. Let us 

remark that if � �(�), �(�), �(�)� ∈ ��,� ∈ [ �,0]	, 

because �(�)+ �(�)= 1 or �(�)= �   or both, then still 
the corresponding solutions (�(�),�(�),�(�)) immediately 
enter into interior Ω or coincide with ��. Next assume that 
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( �(�), �(�), �(�)) does not belongs to Ω for � ∈ [ �,0]. 
Now due to lemma 2.2.1 and 2.2.2 either there exists a positive 
time 	� = max(� ,��), such that the corresponding solution 
(�(�),�(�),�(�)∈ �	for �> � or the corresponding solution is 
such that (�(�),�(�),�(�)→ ��(1,0,0)) as �→ +∞. But 
�� ∈ ��. Hence the global attractively of Ω in ��

�,+  has been 
proved. 
 
3. Qualitative Analysis of the Model System 
 
3.1  Equilibria and Existence 
 
The system of equation (2.2) has six equilibrium points, 
namely  ��(0,0,0), ��(0,0,0), ��(0,0,1), 

�� �
��

��
,

�����

��(����)
,0�	 ��(� ,0,� ), where �  can be obtained 

from the equation ��
�� � 2��(�� ����)�

� +

(�� ����)� ��
���

� = 0 and ��(�,�,��) Where  � =
��

��
 , 

� =
����(�����)�������

�
���

�
����������

������(����)
 and �� = 1 +

��

��
�

��

��
 . It is 

easy to see that the equilibrium point ��(0,0,0), ��(�,0,0), 
��(0,0,1) and ��(� ,0,� ) exist for all parametric values. 

The equilibrium point �� �
��

��
,

�����

��(����)
,0�	 and ��(�,�,��) both 

exist if �� > ��. 
 

Lemma 3.1.1 
 

The diseases free equilibrium point ��(� ,0,� ) is always 
exists. 
 

Proof: We obtained from the equation (2.2),  � = 1 +
��

��
√�  . 

Clearly �  is positive. Now we consider the case for � , �  can 

be obtained from the relation ��
�� � 2��(�� ����)�

� +
(�� ����)� ��

���
� = 0. Now if �� > ���� then change of 

sign can be shown as follows: By descartes rule of sign there is 
at least one positive root. Again replace �  by �  we obtained 

��
�� � 2��(�� ����)�

� (�� ����)� ��
���

� = 0.  
 

So in this case we have no negative real root. Since it is cubic 
equation so one positive root is gauranted. One the other hand 
if �� < ���� similarly by Descartes rule of sign we must have 
a positive root. Thus any case we must have a positive root. 
 

Lemma 3.1.2:  
 
The planner equilibrium point  ��(�,�,��) exists if �� > ��.  
 
Proof 
 

We obtained from the equation (2.2), � =
��

��
 and �� =

��

��
√� .  

 
Clearly they are both positive. Now we find out � as,  � =
�(���)�√����	�

�(����)
. Now we substitute the values of � and �� then we 

obtained � =
����(�����)�������

�
���

�
����������

������(����)
 .  

 
Since ��,��,��,��,�� are all positive, so it is positive if  
�� > ��. Hence the equilibrium point is exists if �� > ��. 
 

Stability Analysis 
 

In this section we perform stability analysis of our model 
system (2.2). Here we first calculate the variational matrix of 
this system (2.2) 

1 2� � ���

���

2√�
�(1 + ��) ��√�

��� ��� �� 0
���

2√�
0 �� 2��� + ��√�

 

 
Lemma 3.2.1 
 
The equilibrium points ��(0,0,0), ��(0,0,0) 

and	�� �
��

��
,

�����

��(����)
,0�	is unstable and  ��(0,0,1) is stable.  

 
The proof of the above lemma is obvious and hence omitted. 
 
Lemma 3.2.2 
 
The equilibrium point ��(� ,0,� )  is always locally 
asymptotically stable. The variational matrix of the system 
around the this equilibrium point is as follows: 
 

1 2� � ���

� ��

2√�
� (1 + ��) ��√�

0 � �� �� 0
� ��

2√�
0 �� 2� �� + ��√�

 

 
This can be written as 
 

� = �

��� ��� ���

0 ��� 0
��� 0 ���

� 

 

Where,  ��� = 1 2� � ���
� ��

�√�
, ��� = � (1 + ��), 

��� = ��√� , ��� = � �� ��, ��� =
� ��

�√�
, ��� = ��

2� �� + ��√� .  The corresponding characteristic equation is 
�� + ��� + �� + � = 0, where � = (���+ ��� + ���), 
� = (������ + ������ ������ + ������), � = ���������

���������. Clearly,  ��� < 0, ��� < 0 then � > 0, � > 0 and 
�� � > 0. Hence, by Routh-Hurth criteria all the eigen 
values are of negative real part. Hence it is stable. 
 
Lemma 3.2.3 
 
The interior equilibrium point ��(�,�,��) is locally 

asymptotically stable if ���� > ����[�� + ���
��

��
] and 

unstable if ���� < ����[�� + ���
��

��
]. 

Proof 
 
The variational matrix V of system (2.2) around the positive 
equilibrium point	��(�,�,	��) is as follows: 
 

1 2� � ���
����

�√�
�(1 + ��) ��√�

��� ��� �� 0
����

�√�
0 �� 2���� + ��√�

. 

 
This can be written as 
 

� = �

��� ��� ���

��� 0 0
��� 0 ���

�.  
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Where ��� > 0 or ��� < 0 according as 2� + � + ��� +
����

�√�
<

1 or 2� + � + ��� +
����

�√�
> 1, ��� < 0, ��� < 0, ��� > 0, 

��� > 0, ��� < 0. The corresponding characteristic equation is  
�� + ���

� + ��� + �� = 0, where 	�� = (���+���), 
�� = (������ ������ ������), �� = ��������� . 
 

Case I:  When ���� > ����[�� + ���
��

��
] , then �� > 0, 

�� > 0 and ���� �� > 0. In this case, by Routh-Hurwitz 
criterion the interior equilibrium point is locally asymptotically 
stable. 
 

Case II:  When ���� < ����[�� + ���
��

��
] , then we have 

�� < 0. Hence, it is unstable. 
 
Interpretation of system dynamics and Numerical 
calculation 
 
In previous section we find out the existence and stability 
condition of the different equilibrium points. We see that the 
diseases free equilibrium point	��(� ,0,� )  is locally 

asymptotically stable when � <
��

��
 and the interior 

equilibrium point  ��(�,�,��) exists if  �� > ��  and locally 

asymptotically stable if ���� > ����[�� + ���
��

��
]. It is to be 

noted that in disease-selective predation model suggested by 
Roy, Chattopadhyay (2005) and Alam (2009), the predation 
rate plays an important role either to get disease free system or 
to keep the three population in stable. But in this model system 
we observe that the existence and stability of disease free 
equilibrium point ��(� ,0,� ) does not depend on predation 
rate (��).; rather it depends jointly on rate of infection (��) 
and death rate of infected prey (��) . Thus, here the control of 
the system shifts from the predation rate to the rate of infection 
and the death rate of infected prey, just because of the herd 
behavior of prey. Here we observe if the number of susceptible 
prey can be maintained below a threshold value which is 
jointly determined by the rate of  (��) and the death rate of 
infected prey  (��) , then the system can easily move to stable 
disease free equilibrium point. This phenomenon has been 
shown numerically in Figure 1. The Figure 1 depicts the 
stability of disease free equilibrium point. Here the simulation 
is perform over a wide range of predation rate (��) and we 
obtained robust stability of disease free equilibrium point. This 
can be interpreted in the way that due to herd behavior of prey, 
the predation rate (��) does not play much crucial role in the 
stability of disease free equilibrium point; whereas it was 
crucially effected in the dynamics of the model which was 
suggested by Roy and Chattopadhyay (2005) and Alam 
(2009). 
 
Furthermore, the existence and stability of three population 
mainly depend on rate of infection (��) and the death rate of 
infected prey (��) along with other parameter values in a very 
complex fashion. To understand this complexity, we study the 
phenomenon numerically which has been shown in Figure 1. 
The Figure 2 depicts the stability of interior equilibrium point. 
Like our previous numerical study, here the simulation is also 
performed over a wide range of predation rate (��)and we 
obtained a very robust stability of disease free equilibrium 
point. 

 

 
 
 
 

Figure 1. Depict the stability of planner equilibrium point. The 
model system (2.2) has been solved using following set of values of 

parameters : ��=0.11, ��=0.081, ��=0.17, ��=0.10, ��=0.8 
��and the initial values as [s(0), i(0), y(0)]=[0.4,0.013,0.1] 

 

 
 
 

Figure 1.1. Depict the stability of planner equilibrium point in 3-
dimentional space using same set of values of parameters and the 

three neighbouring initial values of  (s, i, y) 
 
 

 
 

Figure 2. Depict the stability of interior equilibrium point. The 
model system (2.2) has been solved using following set of values of 

parameters:	��=0.51, ��=0.072, ��=0.13, ��=0.32, ��=0.8 �� 
and the initial values as [s(0), i(0) ,y(0)] =[0.4,0.013,0.1] 
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Figure 2.1. Phase space of 3-D plot of interior equilibrium point 

 
Depict the stability of interior equilibrium point in 3-
dimentional space using same set of values of parameters and 
the three neighbouring initial values of (s, i, y). 
 
Conclusion 
 
In the previous study of disease selective predation made by 
Alam [17], it was pointed out that the predation rate that is the 
parameter (��) takes a crucial role in the diseases-selective 
predation system. If  (��) exceeds certain threshold value 
(regulated by other system parameters) then it has a possibility 
for extinction of the prey population. Further, the possibility of 
risk of extinction of prey population has been increased due to 
time lag for gestation. In real world biological communities 
with this type of selective predation, such as human population 
and fish population in a certain pond or lake, may tend to a 
situation of extinction of the prey population which sometimes 
may lead to ecological imbalance. But here analyzing our 
model system we observe that the existence and stability of 
diseases free equilibrium point ��(� ,0,� ) does not depend 
on predation rate  (��) ; rather it depends jointly on rate of 
infection  (��)	and death rate of infected prey 	(��). Thus, here 
the control of the system shifts from the predation rate to the 
rate of infection and the death rate of infected prey, just 
because of the herd behavior of prey. Here we observe if the 
number of susceptible prey can be maintained below a 
threshold value which is jointly determined by the rate of	(��)  
and the death rate of infected prey (��), then the system can 
easily move to stable disease free equilibrium point. Here we 
also observe that in case of fatal disease the disease free 
equilibrium can be achievable if the number of suspectable can 
be maintained below a certain threshold value which is 
determined by the ratio of death rate of infected prey and rate 
of infection of disease. This observation directly supports what 
the real practice we do in case of fatal diseases. Actually in our 
real life, in case of serious virus effects like bird flu, swine flu 
etc., we kill the suspectable prey to maintained the suspectable 
prey population below a certain threshold level as we observe 
in our analysis. 
 
Furthermore, it has been pointed out by  Flake et al. ([13]) that 
co-existence of three population (suspectable prey, infected 
prey and predator) is not possible if the infected prey has 
negative effect on the growth rate of predator population; 
where as in our problem we observe that for the disease 
selective with herd behavior of prey, the system may show the 
co-existence of three populations under certain restriction on 
the system parameter (mainly on the predation rate and on the 
death rate of infected prey). Thus, the idea of disease selective 

predation may be effectively applied to multi-prey systems 
where infection in some prey is harmful for their bio-diversity.  
In those situations, strong disease-selective predation may help 
the predator to persist safely as well as remove the infection 
from the system rapidly. 
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