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ARTICLE INFO                                        ABSTRACT 
 
 

This paper shows a mechanism for hydrogen combustion, an important submechanism in hydrocarbon 
oxidation and biofuels. Once exposed the equations derived from the chemical kinetics and 
concentration rates of each species involved, the complete mechanism of hydrogen oxidation is 
displayed. The strategy for obtaining a reduced mechanism with two reactions consists of four steps. 
This method involves the use of assumptions of steady-state for species and partial equilibrium for 
reactions. Jacobian matrices have extremely high stiffness ratio, which complicates the implementation 
of explicit methods. Thus, the fourth-order Rosenbrock method is applied with four stages, adaptive 
step control and specific parameters. The code is verified and shows good results for both the 
Robertson model and the reduced mechanism presented. 
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INTRODUCTION 
 

The reaction mechanism of hydrogen oxidation is widely used in rocket propulsion calculations and also becomes important as a 
subsystem in the oxidation of hydrocarbons, as seen in Turns (2000). Chamousis (2000) shows some advantages and disadvantages of 
the use of hydrogen as a transportation fuel. As advantages, it can be mentioned: high energy yield (122kJ/g), produced from many 
primary energy sources, high diffusivity, water vapor as the major oxidation product, is the most abundant element and the most 
versatile fuel. As disadvantages, there are low density – large storage areas, not found free in nature, low ignition energy (similar to 
gasoline) and is currently expensive. In this way, the study of this fuel and its behavior is fundamental for advances in the field of 
combustion of hydrocarbons and biofuels. In the search for substitutes for fossil fuels, hydrogen appears as a good candidate, since it 
can be obtained from renewable raw materials and almost does not emit pollutants into the atmosphere. Chemical kinetic modelling has 
become a tool for the understanding of the combustion, leading to the development of different kinetic mechanisms. Anyway, computer 
simulations with detailed mechanisms are delicate because of the existence of highly reactive radicals, which brings stiffness to the 
system of equations. Therefore, it is necessary to develop reduced mechanisms with fewer variables and moderate stiffness, 
maintaining good precision and the behaviour of the mechanism. In next section will be presented the concepts of chemical kinetics, 
production and destruction rates, reaction rates, steady-state approximation and partial equilibrium. Following, complete mechanisms 
and asymptotic analysis for reducing the mechanism for the combustion of hydrogen are presented. Next, there is the Rosenbrock 
method presentation, its conditions of order and stability, and the implementation of a fourth-order four-stage method. 
 

Chemical Kinetics 
 
 

For the modeling of combustion it is necessary to know some important concepts in chemical kinetics, such as: elementary reaction 
rates, steady-state approximation and partial equilibrium. Most elementary reactions of greater interest in combustion are bimolecular 
and, considering an arbitrary bimolecular reaction, are of the form 
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          (1) 
 
that is, two molecules collide and react, forming two different molecules. The rate at which each reaction takes place is directly 

proportional to the concentration in  of each of the reactant species, i.e. 
 

          (2) 
 

Equation (2) can be rewritten in order to suggest the dependence of the coefficient  in relation to temperature. If the temperature range 
of interest is not very wide, the bimolecular rate coefficient can be expressed by the empirical Arrhenius form, 
 

          (3) 
 

where  is a constant called pre-exponential or frequency factor. Comparing equations (6) and (7), we see that  is not constant but 

depends, based on collision theory, on . Arrhenius plots of  and  for experimental data are used to obtain activation 

energy values, since the slope of such plots is . Even if the tabulation of experimental values for rate coefficients in Arrhenius 
form is common, the most frequent practice is to use the form with three parameters: 
 

          (4) 
 

where ,  and  are empirical values. 
 
To simplify the chemical kinetics involved and favor the resolution of the problem, a reduction of the mechanism is made using some 
approximations, such as steady-state approximation and partial equilibrium. The steady-state hypothesis is valid for intermediate 
species that are produced by slow reactions and consumed by fast reactions, so their concentrations remain small (Turns 2000). The 
hypothesis of partial equilibrium is justified when the velocities of the forward and backward reactions are much greater than the other 
specific velocities of the mechanism (Peters 1988). 
 

MECHANISMS OF HYDROGEN COMBUSTION 
 

According to Turns (2000), the initiation reactions are 
 

            (5) 
 

             (6) 
 

The steps of chain-reaction involving ,  and  radicals are 
 

             (7) 
 

             (8) 
 

             (9) 
 

            (10) 
 

Chain-terminating steps that involves ,  and  radicals are the three-body recombination reactions: 
 

             (11) 
 

            (12) 
 

            (13) 
  

            (14) 
 

With the objective of completing the mechanism, reactions involving , the hydroperoxy radical, and , hydrogen 
peroxide, are included. When the reaction below becomes active, 
 

            (15) 
 

then the following reactions enter the system: 
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             (16) 
 

             (17) 
 

             (18) 
 

and 
 

            (19) 
 

             (20) 
 
With 
 

            (21) 
 

            (22) 
 
 

             (23) 
 

            (24) 
 
Depending on the temperature and pressure conditions, the reverse reactions may be relevant too. Therefore, in the modeling of 

the  system can be taken into account up to forty reactions involving the eight species: , , , , , ,  

and . For the set of elementary reactions (5-24), the balance equations for the hydrogen, using the operator  for 

the reaction  defined by , can be written as (Peters 1992; De Bortoli 2012): 
 

                           (25) 
 

Assuming the steady-state hypothesis for the species , ,  and , their differential operators are equal to zero, which 

leads to four equations among the reaction rates :  
 

          (26) 
 

Making the rates  e  equal to  and 

, results the following linear 
combinations: 
 

           (27) 
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The stoichiometry of these balance equations corresponds to the global mechanism of two-step for the hydrogen, where  is an inert 
needed to remove the bond energy that is liberated during recombination (Peters 1992): 
 
 

           (28) 
 
The main advantage of this mechanism is the reduction of the system stiffness, reducing the time required for the solution of reactive 
flows. This method can be used for obtaining reduced mechanisms for more complex fuels, such as methanol, ethanol and biodiesel. 
 
ROSENBROCK METHODS 

 
It is desirable that the method to be implemented for numerical integration of stiff systems of ordinary differential equations be stable in 

a large region of the real negative part of the complex -plane, as well as accurate in some neighbourhood of the origin. Most explicit 
methods have a bounded region of stability, which requires small step sizes of integration even for moderately stiff systems (Bui 
1979b). For extremely stiff systems, it is desirable to develop a L-stable method rather than A-stable or stiffly stable methods, since in 

general these last methods, which are not damped maximally as , are not satisfactory (Bui 1979c). This undesirable 
asymptotic behaviour often results in oscillatory solutions for stiff problems.  In this work, an L-stable method is implemented based on 
a class of Runge-Kutta methods known as the Rosenbrock method. The conditions for L-stability require that the method be implicit. 
Implicit or semi-implicit Runge-Kutta methods are known to satisfy conditions of good stability (Butcher 1964). In order to propose an 
alternative for the solution of implicit equations, Rosenbrock (1963) presented a new method. He developed a new class of single-step 
methods, which is based on linearizations of the implicit Runge-Kutta methods. Thus, it is avoided the resolution of non-linear systems 
to solve a sequence of linear systems, which facilitates the implementation of the method. This method is also found in the literature as 
a linearly implicit Runge-Kutta method or as diagonally implicit Runge-Kutta method. 
 
 

Table 1. Parameters of fourth-order L-stable Rosenbrock method [Bui 1977] 
 

�� 0.9451564786 ��� 0.1012236115 
�� 0.341323172 ��� 0.9762236115 
�� 0.5655139575 ��� 0.3922096763 
�� 0.8519936081 ��� 0.7151140251 
��� 0.5 ��� 0.1430371625 
��� 0, ���	� = 2,3,4	���	� = 1,2, … , � 1 

 

 
Table 2. Comparison between present work, Lorenzetti et al [2010] and experimental values 

 

�/� Present work Lorenzetti et al [2010] Experimental value [Sandia 2010] 

5 0,00733082 0,00073848 0,00156 

10 0,02198189 0,0080656 0,0251 

15 0,04515112 0,02755 0,0583 

20 0,07386720 0,068598 0,0924 

25 0,10484718 0,11501 0,127 

30 0,13507058 0,15291 0,15 

35 0,16220864 0,16148 0,154 

40 0,13610308 0,14699 0,132 

45 0,10345754 0,12357 0,105 

50 0,07984447 0,099465 0,0909 

55 0,06405627 0,082871 0,0673 

60 0,05448827 0,066507 0,0619 

65 0,04950991 0,054543 0,0514 

 

According to Bui (1979a), the -stage Rosenbrock procedure for solving the following system 
 

             (29) 
 

where , ,  and  is assumed to be analytic in the neighbourhood of . The Rosenbrock method 
is given by: 
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The conditions of L-stability are: 
 

  on Real( ) . 

  has lower numerator degree than denominator degree in 
 
Consider that 
 
 

 

where  (for all ) is the inverse of one of the roots of the Laguerre polynomial of degree 
 
Four-Stage Method of Order Four  
 

The roots of the Laguerre polynomial of degree 4 are 

parameter  should have one of the following values: 

. Using  for the parameter 
error constant. This method is defined by the set of parameters contained in Table 1.
 
Order conditions 
The coefficients used in the Rosenbrock method determine new properties of stability and order conditions, different from the
conditions of the Runge-Kutta methods. According to Lambert 
expand the equation in Taylor series to the desired order and compare the results with the Taylor's correct answer. Further d
development for high-order Runge-Kutta methods are contained in Butcher 
order conditions for the fourth-order Rosenbrock method are:
 

Figure 1: First variable of Robertson’s model.
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has lower numerator degree than denominator degree in . 

      

) is the inverse of one of the roots of the Laguerre polynomial of degree . 

The roots of the Laguerre polynomial of degree 4 are , , 

should have one of the following values: , 

for the parameter , Bui (1977) developed a fourth-order L-stable method which also minimizes
error constant. This method is defined by the set of parameters contained in Table 1. 

The coefficients used in the Rosenbrock method determine new properties of stability and order conditions, different from the
Kutta methods. According to Lambert (1991), to obtain a Runge-Kutta method of highest order, we must 

expand the equation in Taylor series to the desired order and compare the results with the Taylor's correct answer. Further d
Kutta methods are contained in Butcher (1964) or Hairer; Norsett; Wanner 

order Rosenbrock method are: 

 

Figure 1: First variable of Robertson’s model. 
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    (30) 

    (31) 

 and , so the 

,  or 

stable method which also minimizes the 

The coefficients used in the Rosenbrock method determine new properties of stability and order conditions, different from the 
Kutta method of highest order, we must 

expand the equation in Taylor series to the desired order and compare the results with the Taylor's correct answer. Further details on the 
or Hairer; Norsett; Wanner (1987). Similarly, the 

 

    (32a) 

                  (32b) 

, 2017 



Figure 2: Second variable of Robertson’s model

Figure 3: Third variable of Robertson’s model.

Figure 4
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Figure 2: Second variable of Robertson’s model 
 

 

Figure 3: Third variable of Robertson’s model. 
 

Figure 4. Reduced mechanism integrated by Rosenbrock 
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air flames 



Figure 6. Comparison of the mixture fraction for 
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Figure 5: Local error over time interval. 

 

Comparison of the mixture fraction for ��/��	jet with experiment.
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jet with experiment. 

    (32c) 

                  (32d) 

    (32e) 

    (32f) 

                  (32g) 

                  (32h) 

, 2017 



Figure 7. Mass fraction of 

 

and considering , for 
 

The local error estimation is given by 
 

  
 

considering the norm  as 
 

   
 

The variables  and  are calculated using step
the increment for the step needs to be limited, which can be done by the following equation, agreeing with De Bortoli 
 

  
 
It is also necessary that the values of the step-

small enough and, in case of  rejection, the growth factor should be replaced by 1, instead of 10, in the next iteration.
 
Code verification 
 

To evaluate the efficiency of the method used, some differential equation systems usually applied in numerical tests were selected. 
Robertson's (1966) model is one of the most well known problems for the analysis of stiff systems. The model describes the kinetics of 
an autocatalytic reaction whose reaction structure is given 

 

 

    
 

where ,  and  are the specific rates given by 
involved.  
 

The model equation can be written as 
 

   

  

  14015                                                        Régis S. de Quadros 

Mass fraction of ��� along the burner centerline. 

 and . 

       

       

are calculated using step-size  and , respectively. To avoid divergence during the iterative process 
the increment for the step needs to be limited, which can be done by the following equation, agreeing with De Bortoli 

       

-size be limited by maximum and minimum values. The initial time increment must be 

rejection, the growth factor should be replaced by 1, instead of 10, in the next iteration.

of the method used, some differential equation systems usually applied in numerical tests were selected. 
model is one of the most well known problems for the analysis of stiff systems. The model describes the kinetics of 

an autocatalytic reaction whose reaction structure is given in. 

       

are the specific rates given by ,  and  and 
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    (33) 

    (34) 

, respectively. To avoid divergence during the iterative process 
the increment for the step needs to be limited, which can be done by the following equation, agreeing with De Bortoli (2015):  

    (35) 

size be limited by maximum and minimum values. The initial time increment must be 

rejection, the growth factor should be replaced by 1, instead of 10, in the next iteration. 

of the method used, some differential equation systems usually applied in numerical tests were selected. 
model is one of the most well known problems for the analysis of stiff systems. The model describes the kinetics of 

    (36) 

and ,  and  are the species 

    (37a) 

                                (37b) 

air flames 



 

             (37c) 
 

The integration interval used was  with the initial conditions: 
 

 

              (38) 
 
The points obtained from the integration developed by Silva (2013), using the Modified Extended Backward Differentiation Formulae 
(MEBDF), are shown in figures 1, 2 and 3 by squares. The stars corresponds to results obtained by Nagy et al. (2014) using MATLAB 
and the continuous line shows the results of fourth order Rosenbrock method. 

 
RESULTS AND DISCUSSION 
 
To obtain the behavior of the species concentration in relation to time, the system of reactive equations was solved by the fourth order 
Rosenbrock method with four stages and an adaptive control for the time-step. The numerical method was implemented in Fortran 
language. A tolerance for error �	 = 	 10�� was assumed. Figure 4 shows the results and Figure 5 shows the local error. As no 
experimental data for comparison of molar concentration of hydrogen was found in the literature, in the following the mixture fraction 
was compared to experimental values obtained from the researches of the Sandia National Laboratory (2010). The result for the mixture 
fraction (�), shown in Figure 6, indicates the decay of the centerline velocity with downstream distance from the entrance. Based on the 
Burke-Schumann analytical solution (Warnatz et al 2006) and the equations presented by Lorenzetti et al (2010), the mass fraction of 
��� along the burner centerline is presented. The nitrogen acts as an inert, not affecting the jet diffusion flame. The result, shown in 
Figure 7, is satisfactory, despite the use of a simple model. The results obtained for the ��� mixture fraction can now be compared 
with those of Lorenzetti et al (2010), and with the experimental data of Sandia National Laboratories (2010). The comparison is shown 
in Table 2. In some intervals, the values obtained are now closer to the experimental ones, as seen at �/� between 10 to 20 and 40 to 
45, for example.	 
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