

Available online at http://www.journalijdr.com

International Journal of DEVELOPMENT RESEARCH

International Journal of Development Research Vol. 07, Issue, 02, pp.11474-11476, February, 2017

Full Length Research Article

FACTS OF AN AERODYNAMICALLY DESIGNED AUTOMOBILE

*Atharva Kale

B.Tech In Aerospace Engineering Amity University Mumbai, India

ARTICLE INFO

ABSTRACT

Article History: Received 11th November, 2016 Received in revised form 14th December, 2016 Accepted 22nd January, 2017 Published online 28th February, 2017

Key Words:

Aerodynamically, Designed, Automobile. Every F1 team must decide how much fuel their aerocars will start each race with as well as the laps on which they to refuel and change Tires Total race time= Time to reach First stop+Time for first stop +Time to end of race

Copyright©2017, Atharva Kale. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The only reason stopping for fuel is quicker than starting with enough fuel to finish the race is because the average mass of a car which refuels during a race is lower than when it doesn't. When the car is lighter it takes less time to complete a lap. The reason behind this is as follows:

Essentially, Newton's second law (F=ma) applies to the car as it travels around the track. From this, we can see that if mass goes up but forces remain unchanged then accelerations must Reduce and lower accelerations mean increased lap times. In reality, it is slightly more complicated all of the forces don't stay the same when fuel load (and hence car mass) changes. Tyre frictional forces (F = mN, where m is the coefficient of friction and N is the normal force) change substantially, but Aerodynamic forces stay largely the same (lift and drag) and these are large. However, the net effect is that a heavy car (i.e. one that is full of fuel) takes longer to get around the track.

MATERIALS AND METHODS

Formulas for Calculating Carburetors CFM Engine size (cid) x maximum RPM / 3456 = CMF CMF @ 100% Volumetric efficiency (example: 250 CID x 6000RPM = 2,100,000 / 3456 = 608 CMF)

Formulas for Calculating Performance Convert between 1/4 mile and 1/8 mile ET's:

1/4 mile ET = 1/8 mile ET x 1.5832
(Thanks to Bobby Mosher for this formula)
1/8 mile ET = 1/4 mile ET / 1.5832 (thanks to Bobby Mosher for this formula)

Calculate 1/4 mile ET and MPH from HP and Weight

ET = ((Weight / HP)^.333) * 5.825 MPH = ((HP / Weight)^.333) * 234

Calculate HP From ET and Weight

 $HP = (Weight / ((ET/5.825)^3))$

Calculate HP From MPH and Weight

 $HP = (((MPH / 234)^3) * Weight)$

Formulas for displacement, bore and stroke

pi/4 = 0.7853982

Cylinder volume = $pi/4 x bore^2 x$ stroke.

Stroke = displacement / $(pi/4 x bore^2 x number of cylinders)$.

Formulas for compression ratio

(CylVolume + ChamberVolume) / Chamber

Volume cylinder volume = $pi/4 \times bore^2 \times stroke$ chamber volume = cylinder volume / compression ratio - 1.0 displacement ratio = cylinder volume / chamber volume amount to mill = (new disp. ratio - old disp. ratio / new disp. ratio x old disp. ratio) x stroke Formulas for piston speed piston speed in fpm = stroke in inches x rpm / 6 rpm = piston speed in fpm x 6 / stroke in inches.

Formulas for brake horsepower

Horsepower = rpm x Torque / 5252 Torque = 5252 x Horsepower / Rpm brake specific fuel consumption = fuel pounds per hour / brake horsepower. Bhp loss = elevation in feet / 1000 x 0.03 x bhp at sea level.

Formulas for indicated horsepower & torque

Horsepower = mep x displcement x rpm / 792,00 Torque = mep x displacement / 150.8 Mep = hp x 792,000 / displacement x rpm mep = hp x 792,000 / displacement x rpm Mechanical efficiency = brake output / indocated output x 100

Friction output = indicated output - brake output

taxable horsepower = bore2 x cylinders / 2.5 Formulas for air capacity & volumetric efficiency Theoreticalcfm = rpm x displacement / 3456 Volumetric efficiency = acutalcfm / theoretical CFM x 100 Street carb cfm = rpm x displacement / 3456 x 0.85 Racin carb cfm = rpm x displacement / 3456 x 1.1

Formulas for tire size & their effect

Effective ratio = (old tire diameter / new tire diameter) x original ratio.

Actual mph = (new tire diameter / old tire diameter) x actual mph

A typical Aerodynamic Car Model

Formulas for g force & weight transfer

Drive wheel torque = flywheel torque x first gear x final drive x 0.85

Wheel thrust = drive wheel torque / rolling radius

g = wheel thrust / weight

Weight transfer = weight x cg height / wheelbase x g.lateral acceleration = 1.227 x raduis / time²

Lateral weight transfer = weight x cg height / wheel track x g Centrufugal force = weight x g. **Formulas for shift points rpm after shift =** ratio shift into / ratio shift from x rpm before shift

Drivehsaft Torque = flywheel torque x transmission ratio

Formula for instrument error

Actual mph = 3600 / seconds per mile.

speedo error percent = difference between actual and indicated speed / actual speed x = 100

Indicated Distance = odometer reading at finish - odometer reading at start

Odoerror percent = difference between actual and indicated distances / actual distance x 100

Formulas for MPH RPM gears & tires

mph = (rpm x tire diameter) / (gear ratio x 336) rpm = (mph x gear ratio x 336) / tire diameterGear ratio = (rpm x tire diameter) / (mph x 336) Tire diameter = (mph x gear ratio x 336) / rpm

Formulas for weight distribution: percent of weight on wheels = weight on wheels / overweight x 100 Increased weight on wheels = [distance of cg from wheels / wheelbase x weight] + weight

Formulas for center of gravity

cg location behind front wheels = rear wheel weights / overall weight x wheelbase cg location off-center to heavy side = track / 2 - [weight on light side / overall weight] x track cg height = [level wheelbase x raised wheelbase x added weight on scale / distance raised] x overall weight.

RESULTS AND DISCUSSIONS

How long will it take to reach the first pit stop?

Let us assume – Fuel Consumption $C = 3 \text{ kg/lap How much slower our lap time is for every kg of fuel on board (also called the "weight effect")$ <math>E = 0.03 sec/ (lap kg)

Time to complete a lap with 1 lap of fuel on board t1 = 100.045 sec

Using this, we can calculate how much slower the car goes for every lap's worth of fuel we have on board

How long will the pit stop on lap 20 take?

Again, we have the following data from the scenario: Total number of laps L end = 50 Stop lap L 2 = 20 Time to add one lap of fuel t f = 0.5 sec

Extra time to complete a lap with a pit stop but without refueling

t p = 20 sec Fuel consumption C = 3kg/lap

Air Molecule movement

Using this data, we calculate

50 20 30 laps of fuel= =it will take 35 seconds more to complete the lap with the pit stop on lap 20./roughly.

How long will it take to complete the rest of the race after the pit stop on lap 20?

This time we begin with 30 laps of fuel and have 30 laps to complete.....

Conclusion

AT a microscopic level the air molecules looks like a ball of electrons. So does a molecule of any randomly moving body. When the body bumps into air molecule, the electrons repel each other. The air molecule has less mass than body, so air molecule bounces away,but energy and momentum are conserved, i.e the air molecules gains some and the body loose some.

Acknowledgements

Some IMPORTANT facts- The sensation driving of a F1 car lies in their braking power which is 5 times higher than their acceleration power. It's not a vacuum behind the car that makes it hard for the aeropackage of the other, it is the windshadow that consists of turbulent air streams. The aero package of the car driving behind needs a clean stream of air to work efficiently. If a car drives to close up to another car, the car looses downforce. This seems weird, but the driver of the leading F1 car will feel the car in the back as well. The car in the back changes the downforce of the car in the front also.

REFERENCES

- Basic Engineering Mathematics, John Bird, 2007, published by Elsevier Ltd.
- Engineering Mathematics, Fifth Edition, John Bird, 2007, published by Elsevier Ltd.
- The Royal academy of Engineering.
