

Available online at http://www.journalijdr.com

International Journal of DEVELOPMENT RESEARCH

International Journal of Development Research Vol. 06, Issue, 11, pp.10046-10047, November, 2016

Full Length Research Article

determination of greatest common divisor in $\left. z \right\lceil \sqrt{2} \right\rceil$

*Sivaraman, R.

Associate Professor of Mathematics, D.G. Vaishnav College, Chennai – 600 106 National Awardee for Popularizing Mathematics Among Masses

ARTICLE INFO

Article History:

ABSTRACT

I had attempted to optimize the time needed to calculate the greatest common divisors in the Euclidean domain $\mathbb{Z}\left[\sqrt{2}\right]$.

Received 17th August, 2016 Received in revised form 21st September, 2016 Accepted 19th October, 2016 Published online 30th November, 2016

Key Words:

Greatest Common Divisor (GCD), Euclidean Algorithm, Euclidean Domain, Binary Algorithms, Sub Quadratic Algorithms.

Copyright©2016, *Sivaraman.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The greatest common divisor henceforth mentioned as GCD of two positive integers a and b is the largest integer that divides both a and b. Finding the GCD of two integers is ubiquitous in many important number-theoretical algorithms, including the AKS primality test and the RSA encryption algorithm. I wish to introduce some of the many fast solutions to this problem in this paper.

Euclidean Algorithm

The Euclidean algorithm runs in $O(n^2)$ time, where n is the maximum bitsize of the inputs. Given two integers a and b with a < b, each step of the Euclidean algorithm replaces the ordered pair (a; b) with a new pair $(a; b^{l})$. The number b^{l} is the remainder upon division of b by a, or $b^{l}=b$ –qa where

 $q = \left\lfloor \frac{b}{a} \right\rfloor$ and $\lfloor x \rfloor$ is the greatest integer less than or equal to x

also called floor function, since its value will round any number x down to the nearest integer. Now, since q is an integer, and gcd(a; b) divides both a and b, it divides both qa and b. Since $b^{l}=b-qa$ it should divide b^{l} .

*Corresponding author: Sivaraman, R.,

Therefore, we reduce the problem of finding the GCD of a and b to finding the GCD of the pair $(a;b^{l})$, where b^{l} is less than both aas well as b. We now can divide a by b^{l} and iterate the process until the numbers become so small that the problem becomes trivial, i.e. it reduces to the ordered pair (u; 0) for some positive integer u. Then, sincegcd(u; 0) = u, the GCD is u itself. We shall now see the following algorithm called "Binary Algorithm".

Binary Algorithm

The binary algorithm also runs in $O(n^2)$ time. Starting with our initial inputs *a* and *b*, we consider each modulo 2. If *a* is odd and *b* is even or vice versa, then we divide out by a factor of 2 since gcd(*a*; *b*) isequal to gcd(*a*; *b*/2) or gcd(*a*/2; *b*), respectively. If both are even, we find gcd(*a*; *b*) = 2 gcd(*a*/2; *b*/2), so we can replace (*a*; *b*) with (*a*/2; *b*/2) and store the factor of 2 elsewhere.

If both are odd, then assuming b > a, we replace (a; b) with (a; b-a). The algorithm terminates when either of the elements of the pair is equal to 0, and the larger element is found to be the GCD. Despite the similar theoretical runtime to the Euclidean algorithm, the binary algorithm is about 15 percent faster in a practical setting (Knuth) since division by 2 can be implemented quickly by a binary right-shift.

Associate Professor of Mathematics, D.G. Vaishnav College, Chennai – 600 106, National Awardee for Popularizing Mathematics Among Masses.

Subquadratic Algorithms

The first example of a subquadratic GCD algorithm was due to Schonhage (Moller, 2008) and ran in $O(n(\log n)^2 \log \log n)$ time. In general, these algorithms are prohibitively slow for any inputs that are not tens of thousands of bits in length.

Extension to Euclidean Domains

The Euclidean algorithm for the integers makes use of the property that, when dividing one integer by another, there is always a 'quotient' and a 'remainder'. Euclidean domains are integral domains that have similar properties. A Euclidean domain is an integral domain R equipped with a function N called a norm that maps elements of R to the natural numbers. Given nonzero elements a and b inR, there exist elements q and r such that a = bq + r, where r = 0 or N(r) < N(b). The element q is called the quotient of a and b, while the element r is called the remainder. Note that Z (the set of all integers) is a Euclidean domain, with its norm mapping each integer to its absolute value. That is, for any integer a, N(a) = |a|.

The concept of GCD can also be easily generalized to commutative rings, of which Euclidean domains are a subset. Given a commutative ring R and elements a and b in R, an element g is the greatest common divisor of a and b if g divides both a and b and any other element dividing both a and b also divides g. It is important to note that in the general case, a pair of elements can have more than one GCD. This is due to the existence of units, elements of R that have multiplicative inverses. If g is a GCD of elements a and b, and u is a unit, then it is easy to verify that gu is also a GCD of a and b. Therefore, our algorithms only attempt to find the GCD that is unique up to multiplication by units.

Description of Algorithms

I prescribe three approaches for calculating the GCD of elements in the integer ring $\mathbb{Z}[\sqrt{2}]$. 3.1 Euclidean Like Algorithm.

The ring $\mathbb{Z}\left[\sqrt{2}\right]$ is the set of all numbers of the form $x + y\sqrt{2}$, where x and y are integers. The first approach is using the Euclidean algorithm. The ring $\mathbb{Z}\left[\sqrt{2}\right]$ is a Euclidean domain with norm $N\left(x + y\sqrt{2}\right) = |x^2 - 2y^2|$. The algorithm is essentially identical to the integer Euclidean algorithm.

Binary Like Algorithm

The second approach is division by $2+\sqrt{2}$. This works similarly to the binary algorithm for integers. We begin with our two elements *a* and *b* in $\mathbb{Z}[\sqrt{2}]$. There are four possible cases: both are divisible by $2+\sqrt{2}$; *a* is divisible by $2+\sqrt{2}$, but *b* is not; *b* is divisible by $2+\sqrt{2}$, but *a* is not and neither are divisible by $2+\sqrt{2}$. In the first case, we can divide both by $2 + \sqrt{2}$, since gcd(a; b)

$$= \left(2 + \sqrt{2}\right) \gcd\left(\frac{a}{2 + \sqrt{2}}, \frac{b}{2 + \sqrt{2}}\right)$$

In the second and third cases, we can divide the respective element by $2+\sqrt{2}$ and the GCD remains the same. In the final case, we replace the element with larger norm with the difference of the two elements. The process is re-iterated until one of the elements is zero, and the nonzero element is the GCD.

Approximate Division Algorithm

The slowest step of the Euclidean algorithm is determining the quotient of the two elements, which requires division and multiplication of large numbers. However, an approximate quotient can be obtained by replacing the original elements with much smaller numbers and performing the multiplication/divisions steps with these replacements. This is done by bit shifting the elements to the right by a fixed amount. An approximate division algorithm that reported significant improvements over other algorithms for finding the GCD of Gaussian integers was published in 2002 (Collins, 2002). Our algorithm for $\mathbb{Z}[\sqrt{2}]$ calculates the approximate quotient q of elements a and b by bit shifting each of the components of a and b by about half their bit size. Upon performing this, I got some interesting results which are summarized below.

RESULTS

I assessed the performance of each algorithm with the Python time library. I took the average runtime (in seconds) of the algorithm over 100 trials with randomly generated inputs of bitsize less than a fixed ceiling k. The results are tabulated below for k equal to 100, 200, 300, 400, and 500.

k	Euclidean	Binary	Approximate Division
100	1.45	2.70	1.46
200	2.88	5.37	2.90
300	4.36	8.62	4.78
400	6.48	12.57	6.64
500	8.21	15.96	8.65

In their present implementations, the Euclidean algorithm is the fastest, but it closely followed by the approximation division algorithm introduced in this paper.

REFERENCES

- Moller, N. 2008. On Schonhage's Algorithm and Subquadratic Integer GCD Computation, Mathematics of Computation Vol. 77, No. 261 (Jan.,)pp. 589-607.
- Knuth, D. Semi-numerical Algorithms, The Art of Computer Programming 2 (3rd edition), Addison-Wesley, ISBN 0-201-89684-2
- Collins, G.E. 2002. A Fast Euclidean Algorithm for Gaussian Integers, J. Symbolic Computation, 33, 385392, doi:10.1006/jsco.2001.0518.