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ARTICLE INFO                                       ABSTRACT 
 
 

 The generalized Jelinski-Moranda (GJ-M) model were suggested by Al turk and Alsolami 
(2016a) to offer several sub-models with different failure rate behavior that can suit more 
different software development projects. The effectiveness of this suggested general formula was 
checked through a simulation study [see; Al turk and Alsolami (2016b)]. In this paper the GJ-M 
model will be checked subjectively and objectively through five actual software reliability data. 
Three methods of estimation and four evaluation criteria will be used in our application. Both 
subjective and objective evaluation results show the applicability and flexibility of the suggested 
general formula as it can produce several sub-models with different failure rate trends. 
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1. INTRODUCTION 
 

Software reliability models in an important approach to assess 
the reliability of any manufactured software. Finding the best 
fit model for different software projects is a very critical issue 
as until now and although with the huge number of the exists 
software growth models in the literature still not being able to 
standardize one single reliability growth model to capture with 
all software failure behaviors. The fault detection rate has 
three possible trends as the testing time progresses; increasing, 
decreasing, or constant which need to be considered when 
choosing reliability growth model. Validating the software 
project using the Generalized Jelinski-Moranda (GJ-M) model 
will help finding the best fit case easier because of its ability to 
cope with all possible trends of failure detection rate through 
its sub-models. By varying the shape parameter β of our 
suggested general formula (see; Al turk and Alsolami (Lutfiah 
Ismail, 2016a)), six different sum-models are generated for our 
real framework in this paper including the very well known 
Jelinski-Moranda (J-M) (Jelinski and Moranda, 1972) and 
Schick and Wolverton (S-W) (Schick and Wolverton, 1978), 
models.  
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Furthermore, applying several estimation methods (see e.g. 
Kapur et al. (1999), Pham (Pham, 2000) and Xie (1991) can be 
another mechanism that may help at choosing the best 
performance estimators that increases the predictive capability 
of the best fit growth model. In this paper the maximum 
likelihood estimation (MLE),non-linear least-square estimation 
(NLSE), and Weighted non-linear least-square estimation 
(WNLSE) methods will be used to obtain the best performance 
estimators for our suggested sub-models. The models are 
evaluated subjectively and objectively using four goodness-of-
fit tests.The rest of this paper is arranged as follows: Section 2 
gives brief description of estimation methods for the GJ-M 
model. Section 3 illustrates the evaluation techniques that will 
be used in our real application. Real application will be 
presented in Sections 4. Eventually, the application is 
concluded in Section 5. 
 

2. GENERLIZEDJELINSKI-MORANDA (GJ-M) 
MODEL ESTIMATION 
 

The probability density function (pdf) of the GJ-M [Al turk 
and Alsolami (2016a)] is defined as follows: 
 

f(t�) = φ[N (i 1)]βt�
���

e��[��(���)]��
�

               (1) 
 

Where 
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i : is the fault index, φ: is a proportionality constant, N: is the 
number of initial faults present in system, β: is the shape 
parameter,t�: is the i�� time interval between detection of 
(i 1)��and i�� faults. The mean time to failure can be 
represented by the following expression: 
 

E(t�) =
┌(

�

�
��)

[�(�����)]

�
�

                         (2) 

 

More characteristics of the GJ-M model can be found in [Al 
turk and Alsolami (2016b)] 
 
2.1. Brief review of maximum likelihood estimation (MLE) 
method  
 
Using the MLE method and the failure time data with size 
n;{t�, t�, … , t�; n > 0}, the likelihood function of the GJ-M 
model will be defined as follows: 
 

L(N, φ, β) =    β�φ� ∏ [N (i 1)]t�
��� e��∑[��(���)]��

��
���        (3) 

 
By taking the natural logarithm of both sides of Equation (3), 
then finding the first partial derivative with respect to the 
unknown three parameters and setting the obtained equations 
to zero the maximal likelihood estimates of N, φ, and β are the 
solutions of the following three equations:  
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2.2. Brief review of nonlinear least squares estimation 
(NLSE) method  
 
The nonlinear least squares NLS estimates can be obtained by 
solving the following two equations:   
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Where ┌�(z) = ∫ dt(lnt)t����

�
e�� 

 

Then substituting the obtained estimated values of N and β 
into the following equation we get the NLS estimate ofφ. 
 

φ� = �Γ �
�
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2.3. Brief review of weighted nonlinear least squares 
estimation (WNLSE) method  
 

The WNLS estimatesN� and β� will be obtained by finding the 
solution of the following two equations:   
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Where ┌�(z) = ∫ dt(lnt)t����

�
e�� 

 

Then φ� can be found by substituting N� and β�  in Equation (12).  
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More details can be found in [Al turk and Alsolami (2016b)]. 
 

3. MODEL EVALUATION TECHNIQUES 
 

Mean of square errors (MSE), root mean of square errors 
(RMSE), mean absolute errors (MAE) and mean absolute 
percentage errors (MAPE) criteria are used for the evaluation 
purpose in our real application. The lower the criteria value, 
the better model performance we get. The formulas of those 
four criteria are: 
 

 MSE =  
�

���
∑ (y� y��)

��
���                      (13) 

 

MAPE =        
∑ �

│������│

��
��

���

�
× 100%          (14) 

 

RMSE = �
�

���
∑ [y� y��]

��
���                   (15) 

 

MAE =
�

���
∑ │y� y��│

�
���                      (16) 

 
Where,i : is the fault index, y�� : is the predicted value, y�:  is 
the true value, n: the sample size of the data, k: the number of 
parameters [for more details see; Zhang et al. (2003), Gentry 
et al. (1995), Chai and Draxler (2014)]. 
 

4. REAL DATA APPLICATION 
 
In this section, five of real data examples are given to illustrate 
the applicability of the GJ-M reliability model, six sub-models 
will be generated. For the estimation of parameters of the G-
JM model the maximum likelihood (ML), the nonlinear least 
square (NLS) and weighted nonlinear least square (WNLS) 
estimation methods are used. The best sub-model will 
determined according to MSE, RMSE, MAE, and MAPE 
criteria. Useful evaluation results of these real numerical 
examples will be presented at the end of this section. 
 

4.1 Data sets 
 

Six sub-models are generated in the application by varying the 
value of the shape parameterβ. Five real data sets with 
different sizes are used. Those data sets are: the NTDS data 
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and consists of 26 failures [see; Goel and Okumoto, (1979)], 
the F11-D program data which includes 15 failures [see; 
Moranda, (1975)], the AT&T Bell failure data and its size is 
22 [see; Pham and Pham, (2000)], Philips failure data 1 and 
Philips failure data 2 with n=246 and 312 respectively [see; Al 
turk, (2007)]. 
 
4.2. Application algorithm  
 
Step 1: Enter data set after checking the fitness between it and 

our studied model using ks.test() function from stats 
package, and testing the existence of the hetroscadisty 
problem using qqtest()function from lmtest package. 

Step 2:Generate six sub-models as special cases of the GJ-M 
model by assuming that:β = 0.5, 1, 1.5, 2, 2.5, and 3. 

Step3: Set initial values for the sub-models’ parameters. 
Step4: Estimate the generated models’ parameters based on 

MLE method, to accomplish this step the nlminb 
package will be utilized. 

Step 5: Estimate the generated models’ parameters based on 
NLSE method, to accomplish this step theminpack.lm 
package will be utilized. 

Step 6: Estimate the generated models’ parameters based on 
WNLSE method, to accomplish this step the optimal 
weightw� will be found by calculating the inverse of the 
variance where i = 1, 2, …, n,  and the minpack.lm 
package will be utilized. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 7: Select the best fit model among the six generated 
models based on four selection methods MSE, RMSE, 
MAE and MAPE by using their mathematical formulas 
in Equations (13,14,15and 16). 

 

4.3. RESULTS AND DISCUSSION 
 
The results of MSE, RMSE, MAE and MAPE criteria are 
listed in Table (1, 2, 3 and4) and drawn in Figure (1). 
According to the criteria’s results the following points are 
concluded: 
 
Based on MSE, RMSE and MAE results we can see that:  

 
For NTDS, F11-D program and AT&T bell data sets; the best 
fit model is Model 2, its smallest MSE, RMSE 
andMAEvaluesare obtained by using the WNLSE method, 
noticing that Model 2 is the very common J-M model, and all 
in all this model performs well using the three selected 
estimation methods. While, For Philips data 1 and data 2; the 
best fit model is also the JM model but when using the MLE 
method, remarking that those two data sets is the larger 
selected ones with 246 and 312 failure times respectively and 
this indicates that the MLE method works properly with large 
data sets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. MSE criteria for comparing some sub-models of the GJ-M formula 
 

Model 
 
 
 

Data 

MSE���
 

MSE���� 
MSE����� 

Model 1 (β = 0.5) 

MSE��� 
MSE���� 
MSE����� 

Model 2 (β = 1) 
(JM model) MSE��� 

MSE���� 
MSE����� 

Model 3 (β = 1.5) 

MSE��� 
MSE���� 
MSE����� 

Model 4 (β = 2) 
(S-W model) MSE��� 

MSE���� 
MSE����� 

Model 5 (β = 2.5) 
MSE��� 
MSE���� 
MSE����� 

Model 6 (β = 3) 

NTDS 
data  
(26) 

111.34 
98.19 
98.19 

7.31 
7.75 
7.20 

37.88 
65.55 
92.09 

73.30 
139.62 
155.32 

79.49 
173.39 
180.03 

75.39 
187.97 
188.92 

 F11-D 
Program (15) 

53.76 
50.78 
50.78 

8.80 
10.40 
4.34 

9.31 
8.95 
5.51 

12.06 
7.98 
8.62 

15.49 
9.27 
11.56 

18.90 
11.31 
13.54 

AT&T Bell 
Data 
(22) 

83.01 
78.53 
78.53 

6.04 
2.37 
1.56 

4.07 
17.89 
27.56 

12.65 
49.16 
62.95 

20.65 
73.92 
84.89 

29.58 
88.37 
93.94 

Philips 
data 1 
 (246) 

12955.08 
7224.53 
14263.76 

1263.26 
15404.14 
1690.31 

11662.95 
19634.22 
19089.24 

18347.32 
20179.81 
19972.88 

19444.38 
20200.85 
19944.07 

19707.06 
20048.57 
19894.02 

Philips 
data 2 
 (312) 

19844.71 
11091.34 
24598.31 

4443.82 
28721.97 
6581.12 

14041.68 
32946.15 
30234.26 

21849.68 
32952.33 
32939.63 

24584.68 
32952.33 
32952.33 

24428.80 
32952.33 
32952.33 

 

 

Table 2. RMSEcriteria for comparing some sub-models of the GJ-M formula 
 

Model 
 
 
 
Data 

RMSE���    
RMSE����   
RMSE����� 

Model 1 (β = 0.5) 
 

RMSE���       
RMSE����     
RMSE����� 

Model 2 (β = 1) 
(JM model) 

RMSE���      
RMSE����    
RMSE����� 

Model 3 (β = 1.5) 
 

RMSE���     
RMSE����  
RMSE����� 

Model 4 (β = 2) 
(S-W model) 

RMSE���     
RMSE����     
RMSE����� 

Model 5 (β = 2.5) 
 

RMSE���    
RMSE����  
RMSE����� 

Model 6 (β = 3) 
 

NTDS 
data  
(26) 

10.55 
9.91 
9.91 

2.70 
2.78 
2.68 

6.15 
8.10 
9.60 

8.56 
11.82 
12.46 

8.92 
13.17 
13.42 

8.68 
13.71 
13.74 

 F11-D 
Program 
(15) 

7.33 
7.13 
7.13 

2.97 
3.22 
2.08 

3.05 
2.99 
2.35 

3.47 
2.82 
2.94 

3.94 
3.05 
3.40 

4.35 
3.36 
3.68 

AT&T Bell 
Data 
(22) 

9.11 
8.86 
8.86 

2.46 
1.54 
1.25 

2.02 
4.23 
5.25 

3.51 
7.01 
7.93 

4.54 
8.60 
9.21 

5.44 
9.40 
9.69 

Philips 
data 1 
 (246) 

113.82 
85.00 
119.43 

35.54 
124.11 
41.11 

108.00 
140.12 
138.16 

135.45 
142.06 
141.33 

139.44 
142.13 
141.22 

140.38 
141.59 
141.05 

Philips 
data 2 
(312) 

140.87 
105.32 
156.84 

66.66 
169.48 
81.12 

118.50 
181.51 
173.88 

147.82 
181.53 
181.49 

156.80 
181.53 
181.53 

156.30 
181.53 
181.53 
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Table 3. MAE criteria for comparing some sub-models of the GJ-M formula 
 

Model 
 
 
 
Data 

MAE��� 
MAE���� 
MAE����� 

Model 1 
(β = 0.5) 
 

MAE��� 
MAE���� 
MAE����� 

Model 2 
(β = 1) 
(JM model) 

MAE��� 
MAE���� 
MAE����� 

Model 3 
(β = 1.5) 
 

MAE��� 
MAE���� 
MAE����� 

Model 4 
(β = 2) 
(S-W model) 

MAE��� 
MAE���� 
MAE����� 

Model 5 
(β = 2.5) 
 

MAE��� 
MAE���� 
MAE����� 

Model 6 
(β = 3) 
 

NTDS 
data  
(26) 

9.23 
8.62 
8.62 

2.54 
2.51 
2.45 

5.88 
7.99 
9.18 

8.00 
11.14 
11.47 

8.18 
12.09 
12.14 

7.80 
12.41 
12.36 

 F11-D 
Program (15) 

7.36 
7.16 
7.16 

2.96 
3.17 
1.99 

3.00 
3.01 
2.21 

3.40 
2.59 
2.89 

3.83 
2.94 
3.36 

4.21 
3.27 
3.61 

AT&T Bell 
Data 
(22) 

8.33 
8.08 
8.08 

2.33 
1.34 
1.10 

1.78 
4.25 
5.10 

3.33 
6.60 
7.28 

4.22 
7.78 
8.17 

4.97 
8.30 
8.45 

Philips 
data 1 
 (246) 

95.89 
70.83 
101.20 

30.71 
109.78 
30.99 

96.82 
122.46 
121.09 

118.66 
123.77 
122.85 

121.38 
123.68 
122.58 

121.98 
123.00 
122.37 

Philips 
data 2 
 (312) 

114.82 
84.85 
131.55 

58.33 
149.78 
68.05 

98.64 
158.11 
153.03 

126.60 
158.12 
158.10 

136.59 
158.12 
158.12 

135.66 
158.12 
158.12 

 
 

Table 4. MAPE criteria for comparing some sub-models of the GJ-M formula 

 
 

Model 
 

 
Data 

MAPE��� 
 MAPE���� 
MAPE����� 

Model 1 
(β = 0.5) 
 

MAPE��� 
MAPE���� 

 MAPE����� 

Model 2 
(β = 1) 
(JM model) 

MAPE��� 
MAPE���� 

MAPE����� 

Model 3 
(β = 1.5) 
 

MAPE��� 
MAPE���� 

  MAPE����� 

Model 4 
(β = 2) 
(S-W model) 

MAPE��� 
MAPE���� 

MAPE����� 

Model 5 
(β = 2.5) 
 

MAPE��� 
MAPE���� 

MAPE����� 

Model 6 
(β = 3) 
 

NTDS 
data  
(26) 

54.14 
51.89 
51.89 

29.04 
38.39 
37.05 

62.85 
82.16 
104.91 

78.46 
122.86 
143.39 

76.31 
146.47 
163.15 

68.45 
160.27 
173.36 

 F11-D 
Program (15  
) 

75.77 
73.99 
73.99 

46.57 
48.94 
36.56 

49.46 
49.04 
40.12 

53.97 
45.68 
46.89 

58.25 
48.51 
51.80 

61.75 
51.44 
54.66 

AT&T Bell 
Data 
(22) 

57.51 
55.38 
55.38 

24.12 
20.35 
17.96 

23.53 
45.97 
56.19 

36.11 
73.26 
83.30 

43.43 
90.76 
97.93 

50.16 
100.39 
103.90 

Philips 
data 1 
 (246) 

75.75 
80.39 
77.22 

93.56 
314.39 
110.92 

240.54 
367.06 
350.81 

322.00 
394.61 
398.99 

352.02 
407.63 
408.01 

363.80 
409.19 
407.84 

Philips 
data 2 
 (312) 

74.52 
89.64 
79.41 

97.49 
398.99 
139.08 

157.02 
533.76 
418.90 

177.21 
534.41 
533.00 

220.44 
534.41 
534.41 

206.13 
534.41 
534.41 

 
 
 

 
 

Figure 1.a. NTDS data 
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Figure 1.b. F11-D program data 
 

 
 

Figure 1.c. AT&T Bell failure data 
 

 
 

Figure 1.d. Philips failure data 1 
 

 
 

Figure 1.e. Philips failure data 2 
 

Figure 1. Some criteria for comparing some sub-models of the GJ-M formula 
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While the results of the MAPE criteria indicate that 
 

JM model is the best performance model for NTDS data; its 
smallest MAPE value is obtained by using the MLE method. 
In addition, the JM model gives the best predictive capability 
forF11-D program and AT&T bell data at WNLSE method. 
For Philips data 1 and data 2; The best fit model is Model 
1which is obtained by supposing that the shape parameterβ =
0.5, its smallest MAPE values are gained from MLE method.  
 
5. CONCLUDING REMARKS  
 

According to our selected test failure data the popular and 
widely used J-M model has been shown to be superior 
compared to our other selected sub-models for most of our 
chosen projects based on four selected model evaluation 
techniques. Also and after investigating three estimation 
methods more reliable results have been obtained by using the 
WNLSE method for most of our application’s cases. However, 
with the large real data sets the MLE method has given the 
more accurate prediction results. Hence, our general formula 
provides several sub-models to test the reliability of a wide 
range of software projects, and with applying different method 
of estimation the best appropriate descriptive model can be 
found with much more prediction accuracy.  
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