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ARTICLE INFO                                       ABSTRACT 
 
 

We consider the numerical solvers for discretized partial differential equations arising from 
different incompressible flows. We used the finite element discretization method to discretize the 
Navier-Stokes equations. IFISS (Incompressible Flow Iterative Solution Software) is used to 
obtained the different grids. We used preconditioned Krylov subspace methods to solve the 
resulting linear systems. Numerical experimental results are performed to compare the 
preconditioned iterative solvers for different types of the incompressible flows. We show the 
efficiency of the Hermitian and Skew-Hermitian preconditioner for the iterative solver such as 
GMRES (Generalized Minimum Residual Methods) 
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INTRODUCTION 
 
We study numerical solution methods of the incompressible 

viscous fluid problem. For an open bounded domain Rd (d 
= 2, 3) with boundary, time interval [0,T] and data f, g and u2 , 
we aim to find a velocity field u = u(x,t) and pressure field p = 
p(x,t) such that: 
 
��

��
� � + (� �)� + 	�� = �    in Ω	 × [0,Γ],          (1) 

∇ � = 0  in  Ω	 × [0,Γ],                                                (2) 
�� = �  in�Ω	 × [0,Γ],                                                (3) 
�(x, 0) = 	��  inΩ,                                                        (4) 

 
Equation 1 represents the conservation of momentum and it is 
called the convection form of the momentum equation. 
Equation 2 represents the conservation of mass, since for an 
incompressible and homogeneous fluid the density is constant 
both with respect to time and the spatial coordinates. 
Equations 1-4 describe the dynamic behavior of Newtonian 
fluids, such as water, oil and other liquids. (Acheson, 1990; 
Batchelor, 2000) for more details. Here v is the kinematic 
viscosity, is the Lapalcian,  is the gradient,  and is the 
divergence.  
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We can use implicit discretization and linearization (for an 
example, Picard’s iteration) of the Navier-Stokes equations to 
obtain a sequence of generalized Oseen problems of the form: 
 

� =	 �
� �′
� �

� (10) 

 
where, A is a discrete convection-diffusion operator, i.e., 
A=I-vH+N. Here H is a discrete diffusion operator and N is a 
discrete convection operator. B and BT are discrete divergence 
and gradient operators, respectively.  
 

The Navier-Stokes equations result a linear system of the form 
 

�� = �                                                                 (11) 
 

Where � = ��
�
� and � = 	 ��

�
�.  

 

Numerical methods for solving the saddle point linear system 
(11) are developed actively. However, all existing methods are 
not robust with respect to all problem parameters such as the 
time step and the viscosity. In this paper, we will propose an 
efficient iterative solver. We will consider the preconditioned 
GMRES method. GMRES method is a common choice when 
we consider an iterative method for the saddle point system 
(10). Our aim of this paper is to study the behavior of the 
Hermitian/Skew-Hermitian splitting (HSS) preconditioned 
GMRES method for the problems arising from different 
incompressible flows. Numerical experimental results for the 

ISSN: 2230-9926 
 

International Journal of Development Research 
Vol. 06, Issue, 06, pp. 8073-8076, June, 2016 

 

International Journal of 
 

DEVELOPMENT RESEARCH 

Article History: 
 

Received 21st March, 2016 
Received in revised form 
16th April, 2016 
Accepted 28th May, 2016 
Published online 30th June, 2016 
 

Available online at http://www.journalijdr.com 

 

Key Words: 
 

Iterative solver,  
Preconditioner,  
Navier-Stokes equations,  
Incompressible flows 

 



preconditioner will be presented. Based on the results, an 
analysis of the preconditioner will be given for the Navier-
Stokes problems and we will make acknowledgement at the 
end of the paper.  
 

MATERIALS AND METHODS 
 
Preconditioning is a transformation of the original system into 
another system such that the new system has more favorable 
properties for iterative solution. A preconditioner P is a matrix 
that effects such transformation. After we apply the 
preconditioner matrix P to the original matrix A, the 
preconditioned system P-1A is supposed to have a better 
spectral property. The choice of the preconditioner is highly 
case dependent. We expect the preconditioner P is easier to 
solve. In addition, the property of the preconditioner P is 
similar with the coefficient matrix A.  In this paper, we focus 
on the Hermitian and Skew-Hermitian preconditioner. The 
Hermitian/Skew-Hermitian splitting (HSS) preconditioner is 
based on Hermitian and skew-Hermitian splitting of the 
coefficient matrix.  
 

Let  � = 	
�

�
	(� + ��), � =

�

�
	(� ��)	 

 
we have the following splitting of A into its symmetric and 
skew-symmetric parts: 
 

� =	 �
� �′
� �

� =  �
� 0
0 �

� +	�
� �′
� 0

� = � + � 

 
Note that H, the symmetric part of A, is symmetric positive 
semidefinite since H and C are. K is a skew symmetric matrix. 
Let >0 be a parameter, the HSS preconditioner is defined as 
follows: 
 

� = 	
1

2�
(� + ��)(� + ��) 

 

where, I is the identity matrix of size m+n. To Solve this 
preconditioner, it requires solving a shifted Hermitian system 
and a shifted Skew Hermitian system. This preconditioner was 
first proposed by Benzi and Golub (2004). Then it is used as a 
preconditioner for the Oseen problem in rotation form by 
Benzi and Liu (2007). 
 

RESULTS 
 
In this section, we will show the numerical experimental with 
the HSS preconditioned GMRES methods. All results were 
computed in MATLAB 7.1.0 on one processor of an AMD 
Opteron with 32 GB of memory. Again in all experiments, 
symmetric diagonal scaling was applied before forming the 
preconditioners. We found that this scaling is not only 
beneficial to convergence, but also it makes finding (nearly) 
optimal values of the shift  easier. Of course, the right-hand 
side and the solution vector were scaled accordingly. We used 
right preconditioning in all cases. The discretized matrices are 
obtained using the software IFISS, see Elman (2005), 
Elman(2006), Elman, Silverst and Wathen (2002). The Stokes 
flow: This example is a classical flow in fluid dynamic. We 
consider a leaky driven-cavity flow. It is a model of the flow 
in a square cavity. The lid is moving from left to right. We 

used the boundary condition {� = 1;	 1	 ≤ �	 ≤ 1	|�� = 1}. 
Figure 1 shows the grid points based on Finite element 
discretization with Q1-P0.  Figure 2 shows the numerical 
solution of the velocity and pressure.  
 

 
 

Figure 1. Stokes flow: Q1-P0 finite element grid distribution 
 with grid parameter 16 by 16 

 

 
 

Figure 2. Stokes flow: Numerical solution of the velocity and 
pressure 

 
Table 1. Iteration counts for the Stokes flows with HSS 

preconditioned GMRES 
 

Grid size Iteration counts 

8 by 8 15 
16  by 16 22 
32 by 32 31 
64 by 64  44 
128 by 128 53 

 

Table 1shows the numerical results based on the HSS 
preconditioned GMRES. As we can see, as the grid size 
increases, the iteration count also increases.  Since the leaky 
driven cavity problem is a Stokes problem, we know HSS 
preconditioner is not the best choice. Instead, we can consider 
the block triangular preconditioner in this case. The Navier-
Stokes flow:  In this experiment, we tested several types of the 
Navier-Stokes flow with different viscosities. Again we model 
the leaky driven cavity flows in a square domain. The 
boundary conditions are the same as in the 3.1. We tested the 
cavity flows with different viscosity various from 0.1 to 10��. 
Figure 3 shows the numerical results for the Navier-Stokes 
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flow with viscosity 0.1, Figure 4 shows the numerical results 
for the Navier-Stokes flow with viscosity 0.01, and  

Figure 5 shows the numerical results for the Navier-Stokes 
flow with very small viscosity 10��.  

 

 
 

Figure 3. Navier-Stokes flow: Numerical solution of the 
velocity and pressure with viscosity 0.1 

 

 
Figure 4. Navier-Stokes flow: Numerical solution of the velocity 

and pressure with viscosity 0.01 
 

 
 

Figure 5. Navier-Stokes flow: Numerical solution of the velocity 
and pressure with viscosity 10-6 

 
Table 2 is the experimental results for the iteration counts of 
HSS preconditioned GMRES for the problem with viscosity 
0.1, 0.01, 0,001, and 10��. We can see that the HSS 
preconditioner works even better for the smaller viscosity. The 
number of the iterations is bounded by 20 for most of the cases 
and it is independent of the mesh sizes. The unsteady Navier-
Stokes flow: This experiment models the unsteady analogue of 
3.2. The problem models “spin-up” flow in a cavity in the 
square domain {(�, �)| 1 ≤ 	�	 ≤ 1, 1 ≤ 	�	 ≤ 1}. 
 

Table 2. Iteration counts for the Navier-Stokes flows with HSS 
preconditioned GMRES with different viscosity � 

 

Grid size � =
�.�0.1 

� = �.�� � = �.��� � = ���� 

8 by 8 19 15 14 13 
16 by 16 25 19 14 14 
32 by 32 31 25 17 12 
64 by 64 51 36 23 12 
128 by 128 72 51 32 15 

 
Table 3. Iteration counts for the unsteady Navier-Stokes flows 

with HSS preconditioned GMRESwith viscosity � = �.� 
 

Grid size �
= �/�� 

�
= �/�� 

�
= �/�� 

� = �/��� 

8 by 8 18 15 13 14 
16 by 16 25 22 19 15 
32 by 32 31 29 23 19 
64 by 64 40 41 37 49 
128 by 128 53 52 44 61 

 

Table 4. Iteration counts for the unsteady Navier-Stokes flows 
with HSS preconditioned GMRES with viscosity � = �.��� 

 

Grid size � = �/�� � = �/�� � = �/�� �
= �/��� 

8 by 8 10 11 13 15 
16 by 16 10 12 14 15 
32 by 32 16 11 14 16 
64 by 64 22 13 14 16 
128 by 128 17 13 16 16 

 

The boundary condition is the same as in 3.2. We also tested 
this flow with different viscosities. Table 3 and 4 shows the 
results for the iteration counts of different viscosity and at the 
different time step.  We can observe that the HSS 
preconditioned GMRES has a better performance for the small 
viscosity. When the viscosity is close to 0.1, the unsteady flow 
is almost the steady flow. In this case, HSS preconditioner 
works not as well as the small viscosity.  
 

Conclusions 
 

The purpose of this study was to explore the properties of the 
preconditioned Krylov subspace methods for the different 
incompressible flows. We used HSS preconditioned GMRES 
iterative solver to solve both the steady state and unsteady 
flows. We also tested Stokes flows and Navier-Stokes flows. 
We analysis the construction, computation cost, performance 
of each preconditioner.  We find out that the HSS 
preconditioner is an efficient preconditioner for the small 
viscous flows. While most of the preconditioners fails to work 
when the viscosity is small. Even though the numerical 
experiments have been limited to the GMRES for the Krylov 
subspace method in this paper, we expect other iterative 
solvers such as BiCGStab to perform similar.  
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