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ARTICLE INFO                                       ABSTRACT 
 
 

This is a review paper on image segmentation. Basically we have tried to focus our work on 
image segmentation using fuzzy logic approach. In this paper we have discussed some basic 
concept of image segmentation and the application of fuzzy c-means algorithm in image 
segmentation. We have implemented this algorithm using MATLAB. This is basically the 
implementation part and now we are working on the efficiency respect to other fuzzy clustering 
algorithms which can be used for image segmentation.   
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INTRODUCTION 
 
Image segmentation is the process of partitioning a digital 
image into multiple segments (sets of pixels, also known as 
super-pixels). The goal of segmentation is to simplify and/or 
change the representation of an image into something that is 
more meaningful and easier to analyze. Image segmentation is 
typically used to locate objects and boundaries (lines, curves, 
etc.) in images. More precisely, image segmentation is the 
process of assigning a label to every pixel in an image such 
that pixels with the same label share certain characteristics. 
The result of image segmentation is a set of segments that 
collectively cover the entire image, or a set of contours 
extracted from the image. Each of the pixels in a region are 
similar with respect to some characteristic or computed 
property, such as color, intensity, or texture. Adjacent regions 
are significantly different with respect to the same 
characteristics. When applied to a stack of images, typical in 
medical imaging, the resulting contours after image 
segmentation can be used to create 3D reconstructions with the 
help of interpolation algorithms like marching cubes. Some of 
the practical applications of image segmentation are- (a) 
Content-based image retrieval, (b) Machine vision, (c) 
Medical imaging, (d) Object detection, (e) Recognition tasks, 
(f) Traffic control system, (g) Video surveillance.  
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Different methods of image segmentation 
 

Thresholding 
 

The simplest method of image segmentation is called the 
thresholding method. This method is based on a clip-level (or 
a threshold value) to turn a gray-scale image into a binary 
image. There is also a balanced histogram thresholding. The 
key of this method is to select the threshold value (or values 
when multiple-levels are selected). Several popular methods 
are used in industry including the maximum entropy method, 
Otsu's method (maximum variance), and k-means clustering. 
Recently, methods have been developed for thresholding 
computed tomography (CT) images. The key idea is that, 
unlike Otsu's method, the thresholds are derived from the 
radiographs instead of the (reconstructed) image. New 
methods suggested the usage of multi-dimensional fuzzy rule-
based non-linear thresholds. In these works decision over each 
pixel's membership to a segment is based on multi-
dimensional rules derived from fuzzy logic and evolutionary 
algorithms based on image lighting environment and 
application. 
 

Clustering methods 
 

The K-means algorithm is an iterative technique that is used to 
partition an image into K clusters. The basic algorithm is 
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 Pick K cluster centers, either randomly or based on some 
heuristic 

 Assign each pixel in the image to the cluster that 
minimizes the distance between the pixel and the cluster 
center 

 Re-compute the cluster centers by averaging all of the 
pixels in the cluster 

 Repeat steps 2 and 3 until convergence is attained (i.e. no 
pixels change clusters) 
 

In this case, distance is the squared or absolute difference 
between a pixel and a cluster center. The difference is 
typically based on pixel color, intensity, texture, and location, 
or a weighted combination of these factors. K can be selected 
manually, randomly, or by a heuristic. This algorithm is 
guaranteed to converge, but it may not return the optimal 
solution. The quality of the solution depends on the initial set 
of clusters and the value of K. 
 

Compression-based methods 
 

Compression based methods postulate that the optimal 
segmentation is the one that minimizes, over all possible 
segmentations, the coding length of the data. The connection 
between these two concepts is that segmentation tries to find 
patterns in an image and any regularity in the image can be 
used to compress it. The method describes each segment by its 
texture and boundary shape. Each of these components is 
modeled by a probability distribution function and its coding 
length is computed as follows: 
 
 The boundary encoding leverages the fact that regions in 

natural images tend to have a smooth contour. This prior is 
used by Huffman coding to encode the difference chain 
code of the contours in an image. Thus, the smoother a 
boundary is, the shorter coding length it attains. 

 Texture is encoded by lossy compression in a way similar 
to minimum description length (MDL) principle, but here 
the length of the data given the model is approximated by 
the number of samples times the entropy of the model. The 
texture in each region is modeled by a multivariate normal 
distribution whose entropy has closed form expression. An 
interesting property of this model is that the estimated 
entropy bounds the true entropy of the data from above. 
This is because among all distributions with a given mean 
and covariance, normal distribution has the largest entropy. 
Thus, the true coding length cannot be more than what the 
algorithm tries to minimize. 
 

Histogram-based methods 
 

Histogram-based methods are very efficient compared to other 
image segmentation methods because they typically require 
only one pass through the pixels. In this technique, a 
histogram is computed from all of the pixels in the image, and 
the peaks and valleys in the histogram are used to locate the 
clusters in the image. Color or intensity can be used as the 
measure. A refinement of this technique is to recursively apply 
the histogram-seeking method to clusters in the image in order 
to divide them into smaller clusters. This operation is repeated 
with smaller and smaller clusters until no more clusters are 
formed.  

One disadvantage of the histogram-seeking method is that it 
may be difficult to identify significant peaks and valleys in the 
image. Histogram-based approaches can also be quickly 
adapted to apply to multiple frames, while maintaining their 
single pass efficiency. The histogram can be done in multiple 
fashions when multiple frames are considered. The same 
approach that is taken with one frame can be applied to 
multiple, and after the results are merged, peaks and valleys 
that were previously difficult to identify are more likely to be 
distinguishable. The histogram can also be applied on a per-
pixel basis where the resulting information is used to 
determine the most frequent color for the pixel location. This 
approach of segmentation is based on active objects and a 
static environment, resulting in a different type of 
segmentation useful in Video tracking. 
 
Edge detection 

 
Edge detection is a well-developed field on its own within 
image processing. Region boundaries and edges are closely 
related, since there is often a sharp adjustment in intensity at 
the region boundaries. Edge detection techniques have 
therefore been used as the base of another segmentation 
technique. The edges identified by edge detection are often 
disconnected. To segment an object from an image however, 
one needs closed region boundaries. The desired edges are the 
boundaries between such objects or spatial-taxons. Spatial-
taxons are information granules, consisting of a crisp pixel 
region, stationed at abstraction levels within hierarchical 
nested scene architecture. They are similar to the Gestalt 
psychological designation of figure-ground, but are extended 
to include foreground, object groups, objects and salient object 
parts. Edge detection methods can be applied to the spatial-
taxon region. Segmentation methods can also be applied to 
edges obtained from edge detectors. Lindeberg and Li 
developed an integrated method that segments edges into 
straight and curved edge segments for parts-based object 
recognition, based on a minimum description length (MDL) 
criterion that was optimized by a split-and-merge-like method 
with candidate breakpoints obtained from complementary 
junction cues to obtain more likely points at which to consider 
partitions into different segments. 
 

Segmentation with fuzzy logic 
 
Clustering Method 
 
Fuzzy clustering is the partitioning of a collection of data into 
fuzzy subsets or clusters based on similarities between the data 
[Passino and Yurkovich, 1998]. The CM, like the other 
methods described previously, develops a fuzzy estimation 
model, to predict the output given the input. The algorithm 
forms rules (or clusters) with training data using a nearest 
neighbor approach for the fuzzy system. This is demonstrated 
in the following example where the same training data set 
used. Recall that these data consist of two inputs (n = 2) and 
one output for each data-tuple. Again we employ Gaussian 
membership functions for the input fuzzy sets, and delta 
functions for the output functions. In addition, we make use of 
center-average de-fuzzification and product premise for 
developing our fuzzy model, which is given by f(x\6). 
However, for the CM we employ slightly different variables. 
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Passino and Yurkovich [1998] make the following 
recommendations on a: 
 
• A small a provides narrow membership functions that may 

yield a less smooth fuzzy system, which may cause the 
fuzzy system mapping not to generalize well for the data 
points in the training set. 

• Increasing the parameter a will result in a smoother fuzzy 
system mapping. 
 

Cluster Analysis 
 
Clustering refers to identifying the number of subclasses of 
clusters in a data universe X comprising n 
partitioning X into c clusters (2 < c < n).
rejection of the hypothesis that there are clusters in the data, 
whereas c = n constitutes the trivial case where each sample is 
in a “cluster” by itself. There are two kinds of 
data: hard (or crisp) and soft (or fuzzy). For nu
one assumes that the members of each cluster bear more 
mathematical similarity to each other than to members of other 
clusters. Two important issues to consider in this regard are 
how to measure the similarity between pairs of observations 
and how to evaluate the partitions once they are formed.
of the simplest similarity measures is distance between pairs of 
feature vectors in the feature space. If one can determine a 
suitable distance measure and compute the distance between 
all pairs of observations, then one may expect that the distance 
between points in the same cluster will be considerably less 
than the distance between points in different clusters. Several 
circumstances, however, mitigate the general util
approach, such as the combination of values of incompatible 
features, as would be the case, for example, when different 
features have significantly different scales. The clustering 
method described in this chapter defines “optimum” partitions 
through a global criterion function that measures the extent to 
which candidate partitions optimize a weighted sum of 
squared errors between data points and cluster centers
feature space. Many other clustering algorithms have been 
proposed for distinguishing substructure in high
data (Bezdek et al., 1986). It is emphasized here that the 
method of clustering must be closely matched with the 
particular data under study for successful interpretation of 
substructure in the data. 
 

Cluster Validity 
 
In many cases, the number c of clusters in the data is known. 
In other cases, however, it may be reasonable to expect cluster 
substructure at more than one value of c. In this situation it is 
necessary to identify the value of c that gives the most 
plausible number of clusters in the data for the analysis at 
hand. This problem is known as cluster validity
Hart, 1973; Bezdek, 1981).  
 
If the data used are labeled, there is a unique and absolute 
measure of cluster validity: the c that is given. For unlabeled 
data, no absolute measure of clustering validity exists. 
Although the importance of these differences is not known, it 
is clear that the features nominated should be sensitive to the 
phenomena of interest and not to other vari
not matter to the applications at hand. 
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data, no absolute measure of clustering validity exists. 
Although the importance of these differences is not known, it 
is clear that the features nominated should be sensitive to the 
phenomena of interest and not to other variations that might 

c –Means Clustering 
 
Bezdek (1981) developed an extremely powerful classification 
method to accommodate fuzzy data. It is an extension of a 
method known as c-means, or 
in a crisp classification sense. To introduce this method, we 
define a sample set of n data samples that we wish to classify:
 

X = {X1, X2, X3 , . . . ,  X n }.  
 

Each data sample, Xi, is defined by 
 

Xi = {Xi1, Xi2, Xi3 , . . . ,  Xi n }
 

Fig 1. Cluster idea with hard c

where each x, in the universe X is an 
m elements or m features. Since the 
different units, in general, we have to normalize each of the 
features to a unified scale before classification. In a geometric 
sense, each x, is a point in m -
the universe of the data sample, X, is a 
elements in the sample space. 
 

Hard c -Means (HCM) 
 

HCM is used to classify data in a crisp sense. By this we mean 
that each data point will be assigned to one, and only one, data 
cluster. In this sense these clusters are also called 
that is, partitions of the data. Define a family of sets 
2,... ,c} as a hard c-partition of X, where the following set
theoretic forms apply to the partition:
 

��
���  i=X 

Ai∩Aj = ϕ all � ≠ �. 
ϕ ⊂ A� ⊂ X all i. 
 
Again, where X = {x1, x2, x 3

comprising the universe of data samples, and 
of classes, or partitions, or clusters, into which we want to 
classify the data. We note the obvious
classes just places each data sample into
1 places all data samples into the same class; neither case 
requires any effort in classification, and both are intrinsically 
uninteresting. The above equation express the fact that the set 
of all classes exhausts the universe of da
indicates that none of the classes overlap in the sense that a 
data sample can belong to more than one class and simply 
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different units, in general, we have to normalize each of the 
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partition of X, where the following set-
theoretic forms apply to the partition: 

3 , . . . ,  x n} is a finite set space 
comprising the universe of data samples, and c is the number 
of classes, or partitions, or clusters, into which we want to 
classify the data. We note the obvious-2<c<n, where c = n 
classes just places each data sample into its own class, and c = 
1 places all data samples into the same class; neither case 
requires any effort in classification, and both are intrinsically 
uninteresting. The above equation express the fact that the set 
of all classes exhausts the universe of data samples and  
indicates that none of the classes overlap in the sense that a 
data sample can belong to more than one class and simply 

, 2016 



express that a class cannot be empty and it cannot contain all 
the data samples. 
 
System design and algorithm 
 

Fuzzy c-Means Algorithm  
 

To describe a method to determine the fuzzy c-partition matrix 
U for grouping a collection of n data sets into c classes, we 
define an objective function Jm for a fuzzy c-partition: 
 

��(�, �) = ∑ ∑ (���)
�′(���)

��
���

�
��� ……… (4.1) 

��� = �(�� ��) = [∑ (�������)
��

��� ]�/�… (4.2) 
 

and where ��� is the membership of the kth data point in the ith 
class. As with crisp classification, the function Jm can have a 
large number of values, the smallest one associated with the 
best clustering. Because of the large number of possible values 
(now infinite because of the infinite cardinality of fuzzy sets) 
we seek to find the best possible, or optimum, solution without 
resorting to an exhaustive, or expensive, search. The distance 
measure, dik in Equation (4.2), is again a Euclidean distance 
between the ith cluster center and the kth data set (data point 
in m space). A new parameter is introduced in Equation (4.1) 
called a weighting parameter, m' (Bezdek, 1981). This value 
has a range m' ∈ [1,∞). This parameter controls the amount of 
fuzziness in the classification process and is discussed shortly. 
Also, as before, �� is the ith cluster center, which is described 
by m features (m coordinates) and can be arranged in vector 
form as before, ��= {vi1, vi2, ……, vim}. Each of the cluster 
coordinates for each class can be calculated in a manner 
similar to the calculation in the crisp case: 
 

��� = ∑ ���
�′�

��� . ���		/	∑ ���
�′�

��� ……(4.3) 

where j is a variable on the feature space, that is, j = 1, 2,... ,m. 
 
As in the crisp case, the optimum fuzzy c-partition will be the 
smallest of the partitions described in Equation (4.1), that is, 
 

Jm(U*, v*) = min J(U, v)…………… (4.4) 
 
with many optimization processes, the solution to Equation 
(4.4) cannot be guaranteed to be a global optimum, that is, the 
best of the best. What we seek is the best solution available 
within a prespecified level of accuracy. An effective algorithm 
for fuzzy classification, called iterative optimization, was 
proposed by Bezdek (1981). The steps in this algorithm are as 
follows: 
 
 Fix c (2 ≤ c < n) and select a value for parameter m'. 

Initialize the partition matrix, U(0). Each step in this 
algorithm will be labeled r, where r = 0,1,2,... 

 Calculate the c centers {��
(�)

} for each step. 

 Update the partition matrix for the rth step, U(r), as follows:  
 

μ
��

(���)= �∑ �
���
(�)

���
(�)�

� ��′���⁄

�
��� �

��

,   for I� =  ............…. (4.5a) 

or    μ
��

(���)
= 0 for all classes I where I	∈ 	 I� ................... (4.5b) 

Where �� = { i  | 2 ≤ C < n ;  ���
(�)

 = 0} ……...................... (4.6) 

and ��  ={1, 2 , . . . , c } - ��	,.  ........................................... (4.7) 

and ∑ ���
(���)

= 1�∈��
 ………...................................….. (4.8) 

 
 If ||U(r+1) — U(r) II < ��, stop; otherwise set r = r + 1 and 

return to step 2. 
 
In step 4, we compare a matrix norm || of two successive fuzzy 
partitions to a prescribed level of accuracy, ��, to determine 
whether the solution is good enough. In step 3, there is a 
considerable amount of logic involved in Equations (4.5)-
(4.8). Equation (4.5a) is straightforward enough, except when 
the variable ��� is zero. Since this variable is in the 

denominator of a fraction, the operation is undefined 
mathematically, and computer calculations are abruptly halted. 
So the parameters Ik and Ik comprise a bookkeeping system to 
handle situations when some of the distance measures, dij, are 
zero, or extremely small in a computational sense. If a zero 
value is detected, Equation (4.5b) sets the membership for that 
partition value to be zero. Equations (4.6) and (4.7) describe 
the bookkeeping parameters Ik and Ik, respectively, for each of 
the classes. Equation (4.8) simply says that all the nonzero 
partition elements in each column of the fuzzy classification 
partition, U, sum to unity. 
 
Flow Diagram  
 

 
 

Fig. 2. Flow Chart of Fuzzy C-Mean Algorithm 
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RESULTS 
 
Input to the System   
 

 
Fig 3. Input Image (Cameraman)

 

Output from the System   
 

 
Fig. 4. Input Image (Cameraman)
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