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INTRODUCTION

Laplace — Beltrami operator plays a fundamental role in Riemannian geometric .In real applications, smooth metric surface is
usually represented as triangulated mesh the manifold heat kernel is estimated from the discrete Laplace operator- Discrete
Laplace — Beltrami operators on triangulated surface meshes span the entire spectrum of geometry processing applications
including mesh parameterization segmentation. The Riemannian manifold with boundary, in the Euclidean domain the interior
geometry is given, flat and trivial, and the interesting phenomena come from the shape of the boundary, Riemannian manifolds
have no boundary, and the geometric phenomena are those of the interior. The present paper is an introduction, so we have to
refrain from saying too must. To any compact Riemannian manifold (M,g) is boundary we associate second- order (P.D.E) , the

Laplace operator a is defined by : A(f)=-div(gradf)for fel’(M,g) . We also sometimes write A, for A if we want to emphasize
which metric the Laplace operator is associated with the set of eigenvalues of A is called the spectrum of A or of M which we will
write as space A or space (M,g)they form a discrete sequence 0=4, <4 <...<4, for simplicity For example, we will mainly

consider compact Riemannian manifolds . The manifolds to investigated which are manifolds of systems of differential
polynomials in a single unknown, possess a degree of analogy to bounded sets of numbers. They are manifolds which may be said

( not to contain infinity as a solution ) U, where each set U, is homeoomorphic, via some homeomorphism /, to an open subset
of Euclidean space r",let M be a topological space , a chart in m consists of an open subset U < # and a homeomorphism
h of U onto an open subset of k" ,a C" atlas on M is a collection (v, , 4, ) of charts such that the U, cover ¥ and h,,h;" the
differentiable vector fields on a differentiable manifold.Tangent space as defined tangent space to level surface y be a curve is in
R",y:t—> ( 7N, 7 (), y”(t))a curve can be described as vector valued function converse a vector valued function given
curve , the tangent line at the point.
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2.1 Basic on Laplacian Riemannian Manifold
Definition 2.1.1

A topological manifold M of dimension 7 , is a topological space with the following properties:

(a) M is a Hausdorff space . For ever pair of points p, g € M , there are disjoint open subsets U,V < M such that p € U and
gel.

(b) M is second countable . There exists accountable basis for the topology of M . (c) Mis locally Euclidean of dimension n
Every point of M has a neighborhood that is homeomorphic to an open subset of R".

Definition 2.1.2

A coordinate chart or just a chart on a topological n—manifold M is a pair(U,p), Where U is an open subset of M and

p:U— Uisa homeomorphism from U to an open subset U = o (U)cR".

Examples 2.1.3

Let S" denote the (unit) n—sphere, which is the set of unit vectors in R"': S" ={x e R"" : | X | =1} with the subspace topology,

S"is a topological n—manifold.
Definition 2.1.4 [Projective spaces]

The n—dimensional real (complex) projective space, denoted by P (R) or P,(C)), is defined as the set of 1-dimensional linear
subspace of R "' or ¢ "), P,(R) or P,(C)is atopological manifold.

Definition 2.1.5

For any positive integer n , the n — torus is the product space 7" =(S"'x...xS") It is an »n — dimensional topological manifold.
(The 2-torus is usually called simply the torus).

Definition2.1.6

The boundary of a line segment is the two end points; the boundary of a disc is a circle. In general the boundary of an n —
manifold is a manifold of dimension(n -1), we denote the boundary of a manifold M as oM . The boundary of boundary is

always empty, 90M = ¢
Lemma 2.1.7

Every topological manifold has a countable basis of Compact coordinate balls. ( B ) Every topological manifold is locally
compact.

Definitions 2.1.8

Let M be a topological space »n -manifold. If (U, ¢),(V,w) are two charts such that U NV # ¢ , the composite map
wop i (UnNV)—>w (UNV)is called the transition map from @toy .

Definition 2.1.9

An atlas A is called a smooth atlas if any two charts in A are smoothly compatible with each other. A smooth atlas A on a
topological manifold M is maximal if it is not contained in any strictly larger smooth atlas. (This just means that any chart that is
smoothly compatible with every chart in A is already in A.

Definition 2.1.10

A smooth structure on a topological manifold M is maximal smooth atlas. (Smooth structure are also called differentiable
structure or C” structure by some authors).
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Definition 2.1.11

A smooth manifold is a pair (M, A), where M is a topological manifold and A is smooth structure on M . When the smooth
structure is understood, we omit mention of it and just say M is a smooth manifold.

Definition 2.1.12

Let M be a topological manifold. (i) Every smooth atlases for M is contained in a unique maximal smooth atlas.
(i) Two smooth atlases for M determine the same maximal smooth atlas if and only if their union is smooth atlas.

Definition 2.1.13

Every smooth manifold has a countable basis of pre-compact smooth coordinate balls. For example the General Linear Group The
general linear group GL(n, R) is the set of invertible nxn -matrices with real entries. It is a smooth »* -dimensional manifold because

it is an open subset of the »’- dimensional vector space M(n,R), namely the set where the (continuous) determinant function is
nonzero.

Definition 2.1.14
Let M be a smooth manifold and let pbe a point of M . A linear map x : c* (s ) — R is called a derivation at pif it satisfies :

(1) X(fe)=f(p)Xg+g(p)Xf

forall s, g e c~(m) . The set of all derivation of ¢~ (a ) at pis vector space called the tangent space to M at p, and is denoted by
[7,Mm ]. Anelement of 7 s is called a tangent vector at p.

Lemma 2.1.15

Let M be a smooth manifold, and suppose p e M and X e T M . If f isaconst and function, then X/ =0.1f f(p)=g(p)=0,
then X (fp)=0.

Definition2.1.16
If y is a smooth curve (a continuous map y:J — M ,where J cRis an interval) in a smooth manifold M , we define the tangent

vector toy at s e J to be the vector »'(¢)= y(di | j el,, M, where %t | is the standard coordinate basis forr g . Other
e : : .

. d . .
common notations for the tangent vector to y are [7*(10),%(10)} and |:77t/ |-, } . This tangent vector acts on functions by :
" :

) 7’(&)/’{%%@]‘:%{ (foy)=%(a).

Lemma 2.1.17

Let M be a smooth manifold and p e M . Every X € (TpM )is the tangent vector to some smooth curve in M .

Definition 2.1.18

A Lie group is a smooth manifold Gthat is also a group in the algebraic sense, with the property that the multiplication map
m:GxG — G and inversion mapm:G —> G, given by m (g,h)=gh, i(g)=g", are both smooth. If Gis a smooth manifold

with group structure such that the map GxG — G given by (g,h) - gh 'is smooth, then Gis a Lie group. Each of the following
manifolds is a lie group with indicated group operation. (a) The general linear group GL (n, R) is the set of invertible nx n matrices
with real entries. It is a group under matrix multiplication, and it is an open sub-manifold of the vector space M (n,R),
multiplication is smooth because the matrix entries of 4 and B . Inversion is smooth because Cramer’s rule expresses the entries
of A"as rational functions of the entries of 4. The n —torus 7" =(S' x...xS") is an n — dimensional a Belgian group.

Definition 2.1.19 [ Lie Brackets]

Let V and W be smooth vector fields on a smooth manifold A . Given a smooth function s : M — R, we can apply V' to f and
obtain another smooth function Vf, and we can apply W to this function, and obtain yet another smooth function
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W v )f =w@r). The operation f — WV f , however, does not in general satisfy the product rule and thus cannot be a vector

field, as the following for example shows let V:[aij and W:(ai] onR", and let f(x,y) = x, g(x,y) = y . Then direct
x y

computation shows that v w (f g)=1, while(f v W g+g ¥V W f)=0, soV W is not a derivation of ¢~ (r*). We can also
apply the same two vector fields in the opposite order, obtaining a (usually different) functionw v f. Applying both of this
operators to f and subtraction, we obtain an operator[y ,w]:C*(M)— C~(M ), called the Lie bracket of V" and W , defined by
w.wlf = (vw)s—(wv)s.This operation is a vector field. The Smooth of vector Field is Lie bracket of any pair of smooth
vector fields is a smooth vector field.

Lemma 2.1.20 [ Properties of the Lie Bracket]

The Lie bracket satisfies the following identities for all V,W,X € (M) . Bilinearity: Va,b e R,

[ aV+bW,X]=a [V,X]+b[W,X] ,

®) [ X,aV +bW 1=a [X,V]+b [X,W].

(1) Ant symmetry [V ,W]=- [W,V].
(ii) Jacobi identity [V,[ W, X 1]+[ W, [ X, V]1]+[X,[V,W] 1=0.Forr, g e Cc™(M):

@ [fV.gWl=fegV.WI+(fVQW—(gW )V
2.3 Convector Fields

Let V' be a finite — dimensional vector space over R and let V" denote its dual space. Then V" is the space whose elements are

linear functions from ¥ to R, we shall call them Convectors. If o e V™ then o :V — R for the any veV , we denote the value
of o on v by o(v) or by <v,o-> . Addition and multiplication by scalar in V'~ are defined by the equations:

) (0,+0,) () = 0,()+0.0). (@o) ()= (@ (v))

Where veV o,ac eV andaeR.
Proposition 2.3.1 [Convectors]

Let ¥ be a finite- dimensional vector space. If (E,,..., E,) is any basis for 7 ,then the convectors (@',...,0") defined by:

IR

i _oSi 1 lf l:J
(6) Q)(E/)—é‘/—{o lf‘ li]

form a basis for V" ,called the dual basis to (£,) .Therefore, dim V" = dim V' .

Definition 2.3.2 [Convectors on Manifolds]

AC" — Convector field o onM ,r >0, is a function which assigns to each g € M a convector o, €T, (M) in such a manner that
for any coordinate neighborhood U,¢ with coordinate frames £ ..., £, the functions o (E,), i =1....., n, are of class C"on U .

For convenience, "Convector field” will mean C* — convector field.
Remark 2.3.3

It is important to note that a C* — Convector field o defines a map o : X (M) —»C’ (M ), which is not only R — Linear but even

C’(M )— Linear, More precisely, if f,g € Cr(M ) and X and Y are vector fields on M , then
o (fX+gY)=fo (x)+go (v) . For these functions are equal at each p € M .

Corollary 2.3.4

Using the notation above let 0=,§1a,. W on V, and let F'(c)= LB w’onU ,wherew and f are functions on Vand U
f= b

. . . w Oy " Oy’
respectively, and w',w’ are the coordinate co frames. Then F (w') = Z% wand B =% 6y -
771 0x 1 Ox

a,0oF . Fori=1...,n



6642 International Journal of Development Research, Vol. 06, Issue, 02, pp.6638-6660, February, 2016

and j =1.,....., m. The first formulas give the relation of the bases; the second those of the components. If we apply this directly to a

map of an open subset of R" into R", these give for F *(dy") the formula

@) F*(dyi)=§ » dx’, i=l,...,n

= ox’
2.4 The Spectrum of the Laplacian in Riemannian Manifolds

To any compact Riemannian manifold (M,g) is boundary we associate second- order (P.D.E) , the Laplace operator A is defined
by : A(f)=—div(grad f)for feL(M,g) . We also sometimes write A, forA if we want to emphasize which metric the

Laplace operator is associated with the set of eigenvalues of A is called the spectrum of A or of M which we will write as space A
or space (M .8 )they form a discrete sequence 0=4, <A <...< A4 for simplicity , we will assume that M is connected . This

will for example imply that the smallest eigenvalue 4, . Occurs with multiplicity.
Definition2.4.1

If L is aliner operator defined on 7 M , then the spectrum of L is the set of eigenvalues of L .It is denoted by space (L) . We take

the Laplace operator A defined as A = —(d o+ad ), where J is adjoin of d in spectral geometry we consider the following two
equations:

(1) Does the spectrum of M determine the geometry of M.
(i1) Does the geometry of M determine the spectrum of M.

proposition 2.4.2 : [Spectrum Riemannian]

The geometry of Riemannian manifold completely determines the spectrum the metric determines the Laplace operator is
spectrum.

Definition 2.4.3: [Sequences be Spectra]

Sequences occur can as the spectra of manifolds a version of this question. Has been answered what finite sequences can occur as
the initial part of spectra of manifolds. If M is a closed connected manifold of dimension greater that or Equal to 3, the any p

reassigned finite sequence 0=4, <A <....<4, is Sequence of first k+1 eigenvalues of A, for some choice of the metric g on M

. In particular, this means that for closed connected manifolds of dimension 3 or Greater, there are no restrictions on the
multiplicities of the eigenvalues 4. fori >0 . In 2-dimension , there are some restrictions on the multiplicities of the eigenvalues.

Let M be a closed connected 2-manifold with Euler characteristic y(M), and let m; be the multiplicity of the ( j—th)

eigenvalue ( j=0 ) of the laplacian operator associated to a metric on M then : . If M is the unit sphere, thenm, <2, +1

e If M is the real projective plane , thenm, <2 +3
e IfMis the torus , thenm, <2, +4

e If Mis the klen bottle , thenm, <2, +3

e If, y(M)<Othen m <2 —2x(M)+3

[Note]
For finite sequences 0 =4, <4 <....< A, however the result by-colin de verdiere holds — even in dimension 2.

2.5 [Estimates on the first Eigenvalue]

The geometry of a manifold affects more that the multiplicities of the eigenvaluees. Here we will focus on bounds on the first non-
zero eigenvalue 4, imposed by the geometry [the first lower bound is due to lich neowicz].

Theorem 2.5.1: [Ricci Tensor]

Let (M, g) be a closed Riemannian manifold of dimension 7 > 2 and let Ric be its Ricci tensor field if.
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(8) Ric (X, X)>(n—-1)k>0
For some constantk >0 , and for all X e (M), then 4, > nk .
Theorem 2.5.2

Let (M, g) be a closed Riemannian manifold, if (X , X )Z(n—l)kZO Ric. For some nonnegative constantk and for all
X eT(M) then.

+
4 DAM)

©) A=

It is in general much easier to given upper bounds on /4, that it is give lower bounds. The basic result in this area is a comparison
theorem due to a complete Riemannian n- manifold whose Ricci curvature is > (n ~1)k,k is some const.

Definition 2.5.3

We mentioned a above that a metric g , defines an inner product not just on 7 but also an inner product g’ on 7. , with this we
can define an inner product on pth exterior power

(10) T" A" :(qAGA...... A, BABA....... AB)=Derg (o, )

Thus if dx,Adx,A............ Adx, defines the orientation w=,/detg dxA........ Adx,

On a compact manifold we can integrate this to obtain total volume — so a metric defines not only length but also volumes, Now
take € N'T,,fe AT, and define f,: AT >R ,by f,(e}w= BAa .Butwe have an inner product, so any liner map on A’7,

is of the form a—>(a,y)for some y€A’T so we have a well —defined liner map B — B form A"TtoA’T satisfying

(7/ﬂ, a)w =pAc.

Definition 2.5.4: [Hodge Star Operator]

The Hodge star operator is the linear map *: QP(M ) - Q"’P(M ) with the property that at each point.
(11) (a.pw=anxp

Proposition 2.5.5: [Compact Support M manifold]

Let M be an oriented Riemannian manifold with volume for w , and let a € Q" (M ), B (M ) be forms of compact support then.

(12) L(d*a,ﬁ)w= [, dp) w
Definition 2.5.6: [Deferential Laplacian on p-forms |

Let M be an oriented Riemannian manifold, then the Laplacian on p-forms is the deferential operator A:QP(M )—)QP(M )
defined by.

(13) A:dd +d'd
Definition 2.5.7: [Starting Point]

A differential form o € QP(M )is harmonic if Aa =0.0n a compact manifold harmonic ply a important role, which there is no
time to explore in this course. Here is the starting point.

Definition 2.5.8:[Harmonic and de Rham Manifold]

Let M be a compact oriented Riemannian manifold then.
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(i). a p-form is harmonic if and only if dor=0and d'a=0
(i1) In each de Rham cohomology class there is at most one harmonic from

Theorem 2.5.9: [Ricci Curvature]
2

—1)7
If M is a compact n-manifold with Ricci curvature > (n - 1) (— k) ,k>0,then 4 < (n 2 ) k+ D ZC( %

Where c, is positive constant depending only on N.

2.6 [Geometric Implications of The spectrum]

The spectrum does not in general determine the geometry of a manifold Neverthless earthiness , some geometric information can
be extracted from the spectrum . In what follows , we define a spectral invariant to be any thing that is completely determined by
the spectrum.

Definition 2.6.1
Let M be a Riemannian manifold. A heat kernel or alternatively fundamental solution to the heat equation, is a function
k:(0,00)x (M x)M — M . That satisfies k(z,x,y)is ¢'inrand ¢*in xand y, %+A2(k):0where A, is the Laplacian with

respect to the second variable.
(14) lim,_,, Tk{t.x.y )f (v)dy = f (x)

for any compactly supported function f/ on M .The heat kernel exists and unique for Riemannian manifold , its importance
stems from the fact that the solution to the heat equation

(15) %+A(u):0,u:[o,oo]xM—>R.

Where A is Laplacian with respect to second variable, with initial condition u(O,x) = f(x) is given by:
(16) u(t,x) = [k(t,x,y) f(»)dy

If {/1} in spectrum of M and {é’,}are the associated eigenfunctions (normalized so the they form an orthonormal basis of L’ (M )

then we can write k(t,x,y)=Xe ¢ (x)¢, ()
spec(m, | G,g) = spec(m,/ G,g) from this it clear that the heat trace Z(¢)= | K(t,x,x)=Xe ™" spectral invariant . The heat trace
M i

has an asymptotic expansion asz — 0° .
(16) Z({)=(4m)™ ‘”/zgajt’

Where the a; are integrals over M of universal homogenous polynomials in the curvature and covariant derivatives. The first few

of these are : a, =vol(M)

1 .
(17 a, = [8.a,= [(55" ~2[Ric| —|Rm

Where S is the scalar curvature, Ric : is the Ricci tensor, Rm : is the curvature tensor. The dimension the volume and total scalar
curvature are thus completely determined by spectrum. If M is a surface then the Gauss Bonnet theorem implies that the Euler
characteristic of M is also a spectral invariant. Amore in depth study of the heat trace can yield more information of dimension

n<6 and if M has same spectrum as the n-sphere S" with the standard metric (resp . RP") then M M is in fact isometric to S”
(resp. RP") more on this can be found.

Definition 2.6.2 [Isospectral Manifolds]

As was alluded to earlier, geometry is not in general a spectral in variant two manifolds are said to be isospectral if they have the
same spectrum. Of non isometric isospectral manifolds was found too distinct but isospectral manifolds.
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2.7 [Direct Computation of The Spectrum]

The first of those is straightforward: direct computation. it rarely possible to explicitly compute the spectrum of a manifold were
actually discovered via this method . Milnor’s example mentioned above consists of two isospectral factory-quotients of
Euclidean space by lattices of full rank being one of full rank being one of the few examples of Riemannian manifolds whose
spectra can be computed explicicitly spherical space forms — quotients of spheres by finite groups of orthogonal transformations
acting without fixed points form another class of examples of manifolds is spectral for the Laplaction acting on p-forms for R <k
but not for the Laplaction acting on p-forms for R</k+1 (recall that a lens space is spherical space form where the group is
cyclic.

Theorem 2.7.1

Let mI',and mI’, be compact discrete subgroup of a lie group G, and let g be a left invariant metric on G if mI', and mI, are

representation equivalent then spec(m, / G, g) = spec(m, / G, g)
2.8 Intrinsic Ultracontractivily on Bounded Bomains Manifolds

We first consider on R’ let D be aconnected bounded lipschitz domain in Rd”(d 2 l) . And A with laplacian with Dirichlet
boundarg conditions on D . It is well Know that the spectrum of A is discrete, o(—A)=(4) =1 with0<A <A <...., and each

A is an eigenvalue with finite multiplicity. Denote by P’ The dirichlet heat kernel on D, and ¢>0 the first normalized
eigenfunction of —A and D it is also well known that D is intrinsically ultracontractive (i.e).

_ Py
8 =t

Indeed, this is given true for more general domains such as holder domains of order o. The main purpose of this section is to
clarify the short time behavior of §, For lipschitz domains. when D is a ... domain.

(19) £ <1+C7” >0

Holds for some constant>0 this estimate was extended recently to smooth compact Riemannian manifolds (under some
additional) geometrical assumptions) our aim is to study similar estimate for less smooth domains D. we shall see that the

estimate, holds for C** domains for any >0, If D is metrely lipchitzian (i.e) C"is no larger true. For instance, for D= (0,1)(1
one has ¢(x)=[1, P*"(x,y,) #(x)=I1., sin(z,x). and wheresin(zr) is the first dirichlet eigenfunction on [0,1]. Thus
combining this with (2,33) below for, D= (0,1) we obtain.

(20) %f}“ <C<Cr | te(0)]

For some constant C>0. A natatural question is there fore whether for lipschitz domain there exists a constant C >0 such that:
21 ¢, <1+Ct, t20

We shall see that the answer is no, in general .It is true that ¢, <1+ C¢”. for some (qualitative) constant of the boundary.

We prove that for any B>0, there exists alipschitz (connected) domain D such thatz’¢ is not boundedz -0 we summarize

t

this as well as the large time behavior and a lower that domain D ia called Lipschitzian if for any x € 0D . There existS >0
a coordinate system is called (Lipschilzian), (r, 49) € RxR""  and a Lipschitz function fon R such that x is the origin and.

B(x,5) "D = B(x,s) " {(r,0):r > £(0) }

22
@2) B(x,5) 8D = B(x,5) N {(r,5):r = £(6) }

A Lipschitz domain is called C*“ for some >0 , if the corresponding Lipschitz function satisfies.
(23) |Vf(@-Vb)|<a-b|

for some C>0 and for all, a,be€R"". In this definition it is required that>2 ,ifd =1 , D is an open bounded interval.



6646 International Journal of Development Research, Vol. 06, Issue, 02, pp.6638-6660, February, 2016

Theorem 2.8.1
IfDisa C*- domain for some>0 , there exists a constant C >0 , such that.

—(a+2)/2
(24) max{l,zt } <¢ <1+ C(At) e, forallt >0

For any B>0 , there exists a bounded Lipschitz domain D — R* such that : lim,_ Supt® =+0o0. Now let M be a d-dimensional

1—0
connected Riemannian manifolds and D an open bounded C"' domain in M. then for any xedD there existS >0, a local
coordinate system in (r,6)e RxR™" in Blx,s). (The open geodesic ball at x with radius ,s) and f € C/(R"") with bounded
second derivatives such that (3,5) holds. For any.

25) y=(r,0)eB(x,s)nD define f(y)=r—f(0)>0
Then y=(r,0) € B(x,s) ND has bounded seconed order derivatives furthermore there exists aconstant C>0 such that.
(26) p(») < C|(r,0)~ £(6,6)|=cF(y)

Where p is the Rieman p= p, , on Dnian distance to 0D . This by the partition of unity, there exists a non negative function

p € C,(D) with bounded derivative and p |0D =0 such that:
27 pzp ,onD
For some constant 1>0 , since D is compact for simplicity we may and do assume that M is compact to.

(28) L=Ns X' +X

Where X is a bounded measurable vector field and {X,}" are C' vector fields we assume that L is elliptic that is.
N 2 2

(r.r)=x(x.1) 2V /[ L feC

u <V )+ BO W] S [r=0.f, f e C (M)

(29)

For some constant 2 >0 . Thus under a local coordinate system on has.

(30) L=54,00,+5b?,

Where (a[ ; )M is continous and strictly positive definite b,.(lﬁi <d ) are bounded measurable. The L-diffusion process uniquely

exists.

For any €D, Let(X (x)) be the L-diffusion process starting fromx and, 71 (x)=inf{lZO,Xt(x)66D} .For all bounded
measurable function f on D .To study the (ontrnsic ultracontractivity) of PD. We assume that L is symmetric w.r.t a probability

measure (Adx) , w(dx)=1,D""dx where V is abounded.Measurable function and (dx) the Riemannian volume measure by the
ellipticity and the sobolev in equality, we know that spectrum of L on D with dirichlet boundary condition is discrete, As in
section 1, we let 4 =4, be the first two dirichlet eigenvalues and ¢>0 the normalized first eigenfunction.

Theorem 2.8.2

LetDc M be an open bounded C"' domain and L a symmetric second order elliptic operator for some bounded measurable
vector field X and C' - vector fields {X|', such that holds. Then for{, defined in with the present 4,# and the transition

i=1

density /.
2.9 [Intrinsic ultracontractivity On complete Riemannian manifolds]

Let M be complete, connected, non — compact Riemannian manifold of dimension d. Let L=A+VV for some € C*(M). Then L

generates a unique (Dirichlet) diffusion semi group P onM which is symmetric in L'(M) , where p=¢""dx. for dx the
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Riemannian volume measure . A ssume that 4 =info(—L) is an eigenvalue of =L . Since M is connected 4, has a unique unite

eigenfunction #>0. In order to study the intrinsic ultracontractivity 2 we make use of the following intrinsic super — poincare
inquality introuduced.

G1) wlr) <rdV 1 O\ M) r20.f <C )

Which is equivalent to &(f, g)= ,u(<Vf ,Vg)) let Ric denote the curvature and ricci curvature on M respectively let pbe the
Riemannian distance on M , and simply write 0, = (0, for fixed reference point0€ M .Let k and K be two positive increasing

function on[0,0) such that :
(32) sec<—k, p, , Ricz—kp, , p, =1

Holds on M. here <—k,0,. means that for anyxeM and unit vectors X,Y €T with <X Y >=0 , one has sec(X,Y)<k or
(X,Y)<—k(p,(x)) while Ric>~k p, means that Ric(X. ,Y)Z—k(po(x)|X|2) for anyxeM and XeT for a positive increasing

function h , on (0,00) we let
(33) B (r)=inf{s>0,h(s) | >0

Theorem 2.9.1

Let M be a cartan —Hadamard manifold with>2 | and letL=A A assume that (3,15) holds for some positive incrasing
functions & with k(c0)=00. We have 0_(L)=¢ holds with.

ess

(34) ,B(r)z&r%d exp[@k" 0/ 1)k (@ +2k™(0) ]

For some constant >0

If k' (R)y k(4+2k"(R) <CR° , R>1

Holds for some constants C>0 and (0,1), then P in intrinsically ultra contractive with.

If , holds for comfort some C>0 ande&=1, then P is intrinsically hyper contractive , if>—k for some constantk >0, then

0,.(A) #0 since M is non-compact and complete, this follows from a comparison for the first Dirichlet eignvalue and the donnely
—L. decomposition principle for rhe essential spectrum. inf (-A)<sup_, A (B(x,])<A (k). Where AB(x.1) is first Dirichlet
eigenvalue of —A on D and Where 4 (k) is one on unite geodesic ball in the d-dim. parabolic space with Ricci curvature equal to
k .Thus the assumption k(o0) =00 is also reasonable . Next, we consider the case with drift. To this end, we adopt the following
Bakry — Emery curvature Ric,,. Instead of Ric. A ssume that for some >0, and positive increasing function & on has instead of
the second condition in

(35) Ric,, = Ric—H, ———2>-k p,
' m

Moreover, let r be a positive increasing function on (0,00] such that Lp” > J?O £y > P21
Theorem 2.9.10

Let o be s pole in M such that hold for some increasing positive functions k and 7(20) =0, then o, (L) =0 moreover, assuming.

ess

K2+2, (x))

36 m =
( ) Py (x)—>0 10g +/U(B(x 1)
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Where B(x,]) is the unit geodesic ball at, we have
holds with.

(37) B(r)y=0y "0 exp[&r'1(32/ r ),/k(4)] ,0>0
For there some constant 8> 0

If there exist C>0 and&€(0.1) such that ' (R)yk(2+2r'(R)) <CR° , R>1 then P is intrinsically ultra contractive and
(3,18) holds for some constant C>0 .If(3,20) holds for some C>0 and £=1 then P is intrinsically hyper contractive.

Example 2.9.11

let M be a Cartan-Hadamard manifold with Ric>—C(p," ") For some constants C>0 and o >1, let v=0p, for some constant

6>0 and p =1 then 0, (L)=0 and (2.33) holds C>0For some constant C>0 consequently. Pis is intrinsically ultra

ess

— L, <6 exp [6’1 t ”’z] ,t>0. For some constants 6,6, >0, which is

contractive if and only if 6,6, > 2, and when " P’

L(u8)
sharp in the sense that constantf], can not be replaced by any positive function Qz(t)i«oas ti«O_ Pis intrinsically

hypercontractive if and only if 6,6, >2.

2.10 The Spectral Geometry of operators of Dirac and Laplace Type

We have also given in each a few additional references to relevant. The constraints of space have of necessity forced us to omit
many more important references that it was possible to include and we a apologize in a dance for that. We a the following
notational conventions, let (M,g) be compact Riemannian manifold of dim. M with boundary OM Let Greek indices 4 range

from 1 to m , and index a local system of coordinates x:(x', ............ ,x’”) on the interior of M expand the metric in the form
ur
ds’ =g, dx"dx" wereg, = (8%,8&) and where we a dopt the Einstein convention of summing over repeated indices we let & be

the inverse matrix the Riemannian measure is given by dx = (dx' yereeneennnes ,dx’")for g=, ldeti & ’ letV be the levi-Civita

connection. We expandV,, .0, =T’ o0x, .Where I’ o are the mR are may then be given by.
(38) R(X,Y)=V,V,~V,V, -V, and given by R(X,Y,Z,W)= g(R(X,Y),Z, W)

We shall let Latin indices i,j range from 1 to m and index a local orthonormal frame {e,,............ ,e, } for the components of the
curvature tensor scalar curvature 7 Are then given by setting P, =R, and =P, =R, . We shall often have an auxiliary vector

bundle set V and an auxiliary given on V , we use this connection and the “ Levi-Civita” connection to covariant differentiation,
let dy be the measure of the induced metric on boundary 0M , we choose a local orthonormal from near the boundary M , so that

{e,} is the inward unit normal. We let indices (a, b) range from 1 to m-1 and index the induced local frame {e,,......,e, , } for the

tangent bundle f the boundary, let L,, =, (VF“ eb, em)denote the second fundamaental form. We some over indices with the implicit

range indicated. Thus the geodesic curvature K is given by K, =L, . We shall let denote multiple tangential covariant

differentiation with respect to the “ Levi-Civita” connection the boundary the difference between and being of course measured by
the fundamental form.

2.11 [The Geometric of Operators of Laplace and Dirac Type]

In this section we shall establish basic definitions discuss operator of Laplace and of Dirac type introduce the De-Rham complex
and discuss the Bochner Laplacian and the weitzenboch formula. Let D be a second of smooth sections C*(v) of a vector bundle v
over space M, expand.

39) D=- { a'"0x,0x, +a’ox, +b }

where coefficient {a’”,a”,b } are smooth endomorphism’s of v, we suppress the fiber indices . We say that D is an operator of
Laplace type if 4>. On C”(v)is said to be an operator of Dirac type if 4’ is an operator of laplace operator of Dirac type if and

only if the endomorphisms y"satisfy the Clifford commutation relations.
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(40) ot vty ==2g"(id).

Let A be an operator of Dirac type and let £ =¢ dx"be a smooth 1-form on M we let 7/(4’ )=§ v'define a Clifford module

structure on V. This is independent of the particular coordinate system chosen. We can always choose a fiber metric on V so that
v is skew adjoint. We can then construct a unitary connection V on V so that Vy =0 such that a connection is called compatible

the endomorphism if V is compatible we expand A=y V_ +w,, w,is tensorial and does not depend on the particular coordinate

system chosen it does of course depend on the particular
compatible connection chosen.

Definition 2.11.1 [The De-Rham Complex]

The prototypical example is given by the exterior algebra, let C‘”(A"M ) be the space of smooth p forms. Let
d:.C” (A"M )—) c (A”"M )be exterior differentiation if ¢ is cotangent vector, Let ext({) : w — ¢Aw denote exterior multiplication
and let int({)be the Dual, Interior multiplication, v(¢)=ext({)—int(¢) define module on exterior algebraA(M ) Since

d+0o= v(dx")V . - d+0 is an operator of Diract type the a associated laplacian.

(41) A, =(d+6) =N @®.ON ®.. DN,

decomposes as the Direct sum of operators of laplace type A’ on the space of smooth p forms C*(A”M ) on has
A, =—g '0x,gg"0x, it is possible to write the p-form valued Laplacian in an invariant form. Extend the “ Levi-Civita” comection
to act on tensors of all types .Let Zw =—g"w , uv define Bochner or reduced Laplacian, let R given the associated action of

curvature tensor. The Weitzenbock formula terms of the Buchner Laplacian in the form

41) A, = ZM + %7(dx“ )}/(dx’ )R

174

This formalism can be applied more generally.
Lemma 2.11.2: [Spinor Bundle]

Let D be an operator of Laplace type on a Riemannian manifold, there exists a unique connection V on V and there exists a
unique endomorphism E of V, so that D¢ =—¢. — E¢if we express D locally in the form D = {g“’“&xﬁxﬂ +a’ox, +b}then the

connection 1-form w of V and the endomorphism E are given by

1 . ’ 5
w, = E(gma” + gJEraE/ld) and E=b-g" (axrwu TWW, - WUF ”')

Let V be equipped with an auxiliary fiber metric, then D is self-adjoin if and only if V is unitary and E is self-adjoin we note if D

is the Spinor bundle and the Lichnerowicz formula with our sign convention that E = —%J (id) where J is the scalar curvature.

Definition 2.11.3 [Heat Trace Asymptotic for closed manifold]

Throughout this section we shall assume that D is an operator of Laplace type on a closed Riemannian manifold (M,g). We shall

discuss the I’ - spectral resolution if D is self adjoin, define the heat equation introduce the heat trace and the heat trace
asymptotic present the leading terms in the heat trace. Asmptotics references for the material of this section and other references

will be cited as needed, we suppose that D is self-adjoin there is then a complete spectral resolution of D on L’ (v) This means

that we can find a complete orthonormal basis {¢} for Lz(v) where the ¢ are a smooth sections to V which satisfy the equation
D¢, =49,

Definition2.11.4

Let V' be a vector space and ¢ € V' are tensors. The product of ¢ and y, denoted p ® y is a tensor of order » + s defined by
POYV, VeV, 2V, ) = P (V) o, VIW (Y, 0enns v, ) - The right hand side is the product of the values of ¢ and y . The product

defines a mapping (p, )—»> ¢ ® y of x r(V) - HS(V)-
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Theorem 2.11.5

The product ’(V) 0 ’(V) - " (V) just defined is bilinear and associative. If @',...., »" is a basis of.

!
(42) V*:gz)l/\(pz/\..../\gok:—(r‘+rz+'"+rk)'
nrl.r!

then {(a)"‘ ®...Qa" )/(l Sy, < n)}is abasis of (V') . Finally £, :w — v is linear, then F'(p ® ) = (F*(/J)®(F*1//).
Proof

Each statement is proved by straightforward computation. To say that ® is bilinear means that if o, are numbers g ,¢,,e (V )’
andy e "(V), then (ap, + fp,)® v = alp, ® v )+ B(p, ® y ) Similarly for the second variable. This is checked by evaluating each
Side on r+ s vectors of 7 ; in fact basis vectors suffice because of linearity Associatively,(p ® y )® 6 = 9 ® (y ® #), is similarly
verified the products on both sides being defined in the natural way. This allows us to drop the parentheses. To see that
0" ®....® " from a basis it is sufficient to note that ife .., e is the basis of ¥ dual tow',.., ", then the tensor Q"

PETEY

previously defined is exactly " ®.....® @™ .This follows from the two definitions:

i iy _ 0 if(ilﬂ"‘ﬂir)i(jn“'ajy)
(43) Q (ej],...,ejr)— {1 if‘(il’”.’ir):(jl’”.’jr) 5

and (a)" ®..® a)) (e, e @ ): " (e, )a)‘2 (e ),..., " (e ): 81672 ..0" ,which show that both tensors have the same values on
J1 Jr 1 J2 Jr a2 Jr
any (ordered) set of 7 basis vectors and are thus equal. Finally, givenrF,:w - v, if w,.,w,_  ew , then

(F (0@9)) W, )= 0O (EW)sees EW,.)) p(F(8,)oes F-(0)) ¢ (Fo (0, o F(w ) =(F @)@ (F W) Wiseeraw, ).
Remark 2.11.7

Let «, beanelementof A” «,, B, anelement of A’. Then a, A B, =(-1)" B, Ana, . Hence odd forms ant commute and the

wedge product of identical 1-forms will always vanish.
Remark 2.11.8 [Exterior Derivative]

The exterior derivative operation, which takes p-forms into (p + 1) -forms according to the rule :

44 C"(N)—>C*(A) ; d(f(x)) = %dx" C*"(A)—=C"(N) ; d(f,(x)dx)) = %dx' Adx’
C"(A)——>C"(N') ; d(f, (x)dx’ Adx") = %dx" Adx’ Adx*

Here we have taken the convention that the ne\):v differential line element is always inserted before any previously existing wedge
products.

Property 2.11.9

An important property of exterior derivative is that it gives zero when applied twice: d dw, =0. This identity follows from the

equality of mixed partial derivative, as we can see from the following simple example:
(45) O (A) =0 (A)—C* ()

df =0, fdx’,ddf =00 fdx' ndx' = %(6,6‘fj'—6‘/.6,f)dx" Adx’ =0.
Remark 2.11.10

(i) The rule for differentiating the wedge product of a p-form &, anda g-form B, is d(a, AB)=da, A B, +(-1)"a, ndp,.

(1) The exterior derivative anti-commutes with 1-forms.
Examples 2.11.11

Possible p-forms ¢, in two-dimensional space are:
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a, = f(x,)
(46) o, =u(x,y)dx+v(x,y)dy
a, =@(x,y)dx A dy.

The exterior  derivative of  line element gives the two-Dimensional curl times the area
d(u(x,y)dx+v(x,y)dy)=(0,v—0 u)dx ndy .

The three-space p-forms «, are.

@, = f(x)

a, =v,dx' +v,dx’ +v,dx’

47
“7 a, =wdx® Adx® +w,dx® Adx' + wdx' A dx?
a, = g(x)dx' Adx* Adx’.
We see that
a, na, =(w, +v,w, +vw,)dx' Adx® Adx’
(48) da, = (gi,.kajvk)%gﬁmdxl Adx"

da, = (0w, +0,w, +0,w,)dx' Adx® ndx’.
(Where ¢, is the totally anti-symmetric tensor in 3-dimensions).

Definition 2.11.12

An alternating covariant tensor field of order» on M will be called an exterior differential form of degree r (or some time
simply, » -form).The set A”(M )of all such forms is a subspace of (M) .

Theorem 2.11.13

Let A(M)denote the vector space over R of all exterior differential forms. Then for (peA”(M ) andy e A’ (M ), the formula ,
((p A l//),, =@, Ay, defines an associative product satisfying ¢ Ay = (— 1)”{/ A @ . With this product, A(M )is algebra overRr . If

feC”(M), we also have f(gz)y/):gz)A(fl//):(p/\(fl//) If @,...,@" is a field of co frames on M (or an open set U of M ),
then the set

49) {(a)"‘/\.../\a)"’)/ (1£il<i2<...<iVSn)}
is a basis of A’(M) or A(U).
Theorem 2.11.15

If F:M — N isa C”mapping of manifolds, then F :A(N )—)A(M ) is an algebra homomorphism. (We shall call A(M ) the
algebra of differential forms or exterior algebra on A ).

Definition 2.11.16

An oriented vector space is a vector space plus an equivalence class of allowable bases, choose a basis to determine the orientation
those equivalents to it will be called oriented or positively oriented bases or frames. This concept is related to the choice of a basis

Q of A'(V).
Lemma 2.11.17

Let Q#0 be an alternating covariant tensor on ¥ of order, n =dim V and let ¢,...,e, .be a basis of V. Then for any set of

. Jj .
vectors v,,...,v,, with v, =X ¢a"e,, , we have,, Qv,,.v,)=det (/) Q (e,.nve,).
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Proof:

This lemma says that up to a non vanishing scalar multiple Q is the determinant of the components of its variables. In particular,

If V'=V"is the space on n-tuples and e,,...,e, is the canonical basis, then Q(vl,...,vn) is proportional to the determinant whose

n

rows arev,,...,v, . The proof is a consequence of the definition of determinant. Given Q andv,,...,v,, we use the linearity and ant
symmetry of Q to write.

(50) Q(vl,...,vn ) =Yaol...al Q(ejl yer€) )

Since Q(e. yeeer. )= 0 if two indices are equal we may write
il Jn 2 )

Q (Vv )=Ssgn o (a"...aZ")Q (e,.... e, ) =det(a/) Q (e,.....e, ). The last equality uses the standard definition of determinant.

Corollary 2.11.18

Note that if 20, then v,,...,v, are linearity independent if and only ifQ (vl,..., vn);t 0. Also note that the formula of the lemma

can be construed as a formula for change of component of  , there is just one component since A" (V) =1, when we change from

the basis e,,...,e, of V'to the basisv,,...,v, .These statements are immediate consequences of the formula in the lemma.
Definition 2.11.19

We shall say that A is orient able if is possible to define a C” n—formQ on M which is not zero at any point, in which case
M is said to be oriented by the choice of Q . A manifold M is orient able if and only if it has a covering {Ua,(pa} of coherently
oriented coordinate neighborhoods.

Theorem 2.11.20

Let M be any C* Manifold and let A(M ) be the algebra of exterior differential forms on A .Then there exists a unique R -linear
map d,, : A(M)— A(M) such that

() If f e N(M)=C"(M), thend,, [ = df , the differential of f .

0eN(M)and c e N(M), thend,(@rc)=d,0 no+(-1YOrd, o (ii) di=0.This map will commute with restriction to open
setsU M , that is, (d,,0), =d, 6, ,and map A'(M) into A*'(M).

3.1 Riemannian Manifold

A bilinear form on a vector space V' over R is defined to be amap ¢:V xV — R that is linear in each variable separately, that
is, for a,f€R and v,v,,v,,w,w,w, eV

ShH ¢(avl + ﬂvz,w)z a¢(vl,w)+,6'¢(v2,w) ¢(v, ow, + S, w2)= a¢(vl,wl)+ ,6'¢(vlw2). A similar definition may be made for a map ¢
of a pair of vector space ¥ x W overR . A bilinear form on V are completely determined by their n°. Values on basis €,.....e, of
V.If a;=4¢(e,e;),1<i,j<n, are given and v=3 Ae,, w=3 u'e, are any pair of vectors in}’, then bilinearity requires that
¢ (v,w)=xz,.a,, A p/ A bilinear form, or function is called symmetric if ¢(v, w)= ¢(w,v), and skew—symmetric if
#(v,w)=—g(w,v) asymmetric form is called positive definite if ¢(v,v)2 0 and if equality holds if and only if v=0; in this case

we often call ¢ an inner product on V.
Definition 3.1.1

A field ¢ of C" —bilinear forms, >0, on a manifold & consists of a function assigning to each point P of M , a bilinear form
@, on IL(M ) ,that is, a bilinear mapping ¢, IL(M )>< T, P(M )—) R, such that for any coordinate neighborhood U, ¢, the function
a, = ¢(E‘.,E j.), defined by @and the coordinate forms E, ..., E, ,are of class C" . Unless otherwise stated bilinear forms will be C”.
To simplify notation we usually write ¢(X s YP) for ¢, (X e )
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Definition 3.1.2

Suppose F.:W —V is a linear map of vector spaces and ¢ is A bilinear form on V .Then the formula
(F'¢)(v,w) = ¢(F.(v),F.(w)) defines a linear form F'¢ on W .

Theorem 3.1.3

Let F:M — N bea C” map and @a bilinear form of class C" onN. Then F'¢ is a C" —bilinear form ony . If ¢ is

symmetric (skew- symmetric), then F'¢is symmetric (skew- symmetric).
Proof

The proof parallels those of theorem and we analogously obtain formulas for the components of F'¢ in terms of those of ¢ we
suppose U,¢ andV,y, are coordinate neighborhoods of P and of F (P) with F (U )c V' .Using the notation of theorem we may
write.

(51) ﬂ, J (p): (F*¢)p (Eip’Ejp): ¢(E(Etp) ’E‘(Ejp) ) °
Applying as before, we have .

n ays ayl i -
B (P):”ZZIW ¢ (Eyips Eigy)-

This gives the formula.

R -

52 )= L2 0 (Fp)) . 1<ij<m,
sl Ox' Ox

for the matrix of components (,Q j)of F'gat P in terms of the matrix () of ¢ at F(p). The functions S ; thus defined are of

class C"atleaston U which completes the proof.

Corollary 3.1.4

If Fis an immersion and ¢ is a positive definite, symmetric form then F’¢ is a positive definite, symmetric bilinear form.
Proof:

All that we need to check is that F'¢is positive define at each P e M . Let X, be any vector tangent to M at p. Then .
(53) F'¢ (XP,XP): ¢ (F(XP)) , E, (XP)Z 0 with equality holding only if F.(X,)=0. However, since F is an
immersion, F.(X,)=0.ifand ononlyifX,=0.

Definition 3.1.5

A manifold & on which there is defined a field of symmetric, positive definite, bilinear forms ¢ is called a Riemannian manifold

and ¢ the Riemannian metric. We shall assume always that ¢ is of class C” .

Dentition 3.1.6 [ Rings Riemannian]

a Riemannian manifold , having define vectors and one-form we can define tensor , a tensor of rank (m , n) also called (m ,n)
tensor , is defined to be scalar function of m one-forms and v vectors that is linear in all of its argument, if follow at once that

scalars tensors of rank (0,0) , for example metric tensor scalar product equation P (V) = <ﬁ , V> requires a vector and one-form

is possible to obtain a scalar from vectors or two one-forms vectors tensor the definition of tensors , any tensor of (0,2) will give
a scalar form two vectors and any tensor of rank (0,2) combines two one-forms to given (0,2) tensor field g, called tensor the

g, ! inverse metric tensor , the metric tensor is a symmetric bilinear scalar function of two vectors that g . and g, is returns a
scalar called the dot product . g (V ,W )= VW =WJY-= g(W ,17) Next we introduce one-form is defined as linear scalar

function of vector P (I7) is also scalar product p (17) = <}3 N > one-form p satisfies the following relation.

PaV +bW) = <P,a17 +bVI7>: a<13,17>+ b<13,w7>= aP(V)+bPOW)
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and given any two scalars « and b and one-forms P ,Q we define the one-form a P + b Q by.

(aP +bO)V) = <a13 + bé,t?>=a<13,r7>+ b<§,V>

=aP(V)+b0 (V)

and scalar function one-form we may  write <13 ,I7> = 13(17) = 17(13) JFor examplem =2 , n =0 and
T(aP +b0,cR +dS)

=acT (P,R)+adT (P,S)+bcT (Q,R)+ bdT (0,S)

tensor of a given rank form a liner algebra mining that a liner combinations of tensor rank (7,7) is also a tensor rank (m,n) ,
and tensor product of two vectors 4 and B given arank(2,0), T = A® B, T(P,0)= A(P).B(Q)and ® to denote

the tensor product and non commutative A® B# B ® Aand B = cA for some scalar , we use the symbol ® to denote the
tensor product of any two tensore.g P ® T = P ® A ® B is tensor of rank (2,1) . The tensor fields in inroad allows one to
the tensor algebra A, (T, M ) the tensor spaces obtained by tensor protects of space R ,7,M and T ,M using tensor defined

on each point p € M field for example M be n-dimensional manifolds a differentiable tensor ¢, € A4, (7T, M ) are same have

n
- eeey

differentiable components with respect , given by tensor products of bases( 0 ) c T M k=1 and
ox* , » >

(dx g )p < T, M induced by all systems on M .

3.2 Riemannian Manifold on Curvature Bounded

Let M be complete Riemannian manifold with sectional curvature bounded below by a constant— K’
Let u e USC (M )and ve LSC (M )be tow functions satisfying. ., :=sup _,[u (x)-v (x) ]<+o . Assume that u and v are

bounded from above and below respectively and there exists a function # :[0,00]— [0,] satisfying w (1)~ 0. when />~0.and
w(0+)=0such that u(x)-u(y)<w(d(x,y)) Then for each &>Othere exist X,y, €M, such that
(p..X)eT*u(x) , (q.7.)eT>v (yg)such that u (x)—u (y)Z,uO -&. And such that
d(x.,v)=¢e .| p.—q.°P0W)|<e. X, <Y op ()+eP ()

Where l=d(xé_, y) and py(l)is the parallel transport along the shortest geodesic connecting x, and y,.We divide the proof into
tow

parts. [a]: without loss of generality , we assume that £, =0. Otherwise we replace u by u— g, +1for each a>0we take

)%a € M such u ()}a)—v ()Aca)+w [J%J >y, -

Part[2]: We apply to (p”(x,y):%d (x,y) +%’d (£,.x )+ /Z—ad (%,,y)>- We have for any J>0Othere exist
X,eST (M)and Y, eST ' (M)such that .(D,p,(x,.,) .X,)eJ> u(x,)and(-D g, (x,.y,) .X,)eJ*u (y,)and the

block diagonal matrix satisfies _ (L + A ”j I< [Xu 0 j <A 46N
5 « 0 _y « «

a

Corollary 3.2.1:[Complete Manifolds with Ricci Curvature Bounded]

Let M be complete Riemannian Manifold with Ricci curvature bounded below by a constant — (n - 1) k*and f a C’function on

M bounded from below then for any & - 0 there exist a point x, € M such that

f(xﬁ)ﬁinf f+g,| Vf |(x€)S g,Af(xﬁ.)Z -&
Proof :

Let u=inf f ,and v = f .wcan be chose to be a linear function. It is straightforward to verify that all conditions in the theorem
are satisfied.
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3.1 Discrete Laplace-Beltrami operator metric

Laplace — Beltrami operator plays a fundamental role in Riemannian geometric .In real applications, smooth metric surface is
usually represented as triangulated mesh the manifold heat kernel is estimated from the discrete Laplace operator- Discrete
Laplace — Beltrami operators on triangulated surface meshes span the entire spectrum of geometry processing applications
including mesh parameterization segmentation.

Definition 3.1.1 [Laplace — Beltrami Operator]
Suppose (M,g)is complete Riemannian manifold, g is the Riemannian metric, A is Laplace — Beltrami operator . The

eigenvalue {4, }and eignfunctions {g, }of A are Ag, =4 , where ¢ is normalized to be orthonormal in I*(M), the spectrum is

n

given by 0=1,<A<..... <A and A —oothen there is heat kernel K(x,y,t)eC”(M xMxR")such that
K(x,y,0)=%e™$,(x)¢, ()

heat kernel reflects all the information of the Riemannian metric.
Theorem 3.1.2

Let f:(M,g) > (M,, g,) diffeomorphism between two Riemannian manifold , If fis an isometric K(x,y,t) =K, (Mf(»),t)f(x)

Vx,yeM,t>0 Conversely, if fis subjective map and equation holds then f is an isomety.
Definition 3.1.2 : [Polyhedral Surface]

An Euclidean polyhedral surface is a triple (S,7,d) , S: is a closed surface, T: is a triangulation of S , d : is metric on S , whose
restriction to each triangle is isometric to on Euclidean triangle.

Definition 3.1.4 : [Cotangent Edge Weight]
Suppose [I{,KJ is boundary edge of A and [K,KJE@M , Then [V‘.,VJis associated with one triangle l [,Vj.V,J the against [I{,KJ

J k

at the vertex V is@® then the weight of [K,T/,J is given by W, =—cota , otherwise if I_V,VJ.J is an interior edge the two angles are
v 2 i

g

a, B then the weightis W, = %(cota +cotf).

Definition 3.1.5 : [Discrete Heat Kernel]

The discrete heat kernel is defined as, K(¢)=dexp (—AC ) ¢"
Definition 3.1.6

Suppose two Euclidean polyhedral surfaces (S,7,d,) and (S,7,d,) are give L =L,if and d and d, differ by a scaling .
Suppose two Euclidean polyhedral, surface (S,7,d,) and (S,7T,d,) are given K,(¢1)=K,(f) Vt=0 ,if d and d, differ by a
scaling.

Proof :

Therefore the discrete Laplace metric and the discrete heat kernel mutually determine each other. We fix the connectivity of
polyhedral surface (S,T) .Suppose the edge set of (S,7) is sorted as E = (el,ez, ................ ,em)where m= |E| , the face set as F and

a triangle [V[,V;..VkJEF asfi,j,k}e F. We denote an Euclidean polyhedral metric d =(d,,d,,......... ,d,) where d:E — R" is the
edge length function d, :d(e,) is the length of edge e is E,(2)=1{(d,.d,d,) ld,+d,|>d, | , Be the space of all Euclidean triangles

parameterized by the edge where {i, j,k} is a cyclic permutation of { 1,2,3 } In this work for convene, we use u = (u,,u,,........ o).
. 1
To represent the metric, where u, = Ed 2

Definition 3.1. 7: [Energy]

(U2 sl )

An Energy E:Q — Ris defined as E(u,,u,......... )= | YW (u)du, . Where W, (u) the cotangent weight on the edge e,
L)kl

determined by the metric y.
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Lemma 3.1.8

Suppose Q < R", is an open convex domain in R" , E:Q)— R is a strictly convex function with positive definite Hessian matrix

then VE:Q — R"is a smooth embedding we show that Q) is a convex domain in R", the energy E is convex . According to
gradient of energy.

VE(d):QQ—R", VE = (u,,1lyreecenee.. ) = (W W, e, ,w ) is an embedding Namely the metric determined by the edge weight

m m

unique up to a sealing.
Lemma 3.1.9

Suppose an Euclidean triangle is with angles (4,4,,4,) and edge lengths (d,,d,,d,) Angles are treated as function of the edge

0 _d_

d
lengths ¢ (d,,d d,)then , = ——cosd, . Where A is the area of the triangle.
: od, 24 ad, 24

Lemma 3.1.10
8c0t¢i B 0 cot¢]
auj ou,

i

. . 1
In an Euclidean triangle, let u, = Ed 2

i

1
and u, :5d>f , then

Corollary 3.1.11

The differential form W =cotgdu, +cotg,du, + cotgdu, .Is a closed 1-form.

Corollary 3.1.112 [Open Surfaces]

The mapping on an Euclidean polyhedral surface with boundaries VE:Q —R" " (u,,u,,........... U, ) > (W, Wy W) s
smooth embedding, it can proven using double covering technique.

3.2 [A Liouville Type Theorem for Complete Riemannian Manifolds]
First we consider the most popular maximum principle, let U be an connected set in an m-dimensional Euclidean space R” and
{x’ } a Euclidean coordinate. We denote by L a differential operator defined by.

0’ 0

(3.1) L=sd’——+s b —
Ox'ox’ ox’

Where a”and &’ are smooth function on U for any indices . When the matrix a” is positive definite and symmetric , it is called a
second order elliptic differential operator . We assume that L is an elliptic differential operator . The maximum principle is
explained as follows.

Defections 3.2.1 [Maximum Harmonic on Riemannian Geometry]

For a smooth function f on U if it satisfies L/ 20 | and if there exists a point in U at which it attains the maximum , namely , if
there exists a point X,in U at which /(%)= f(x), for any point ¥ in M then the function/is constant. In Riemannian
Geometry . this property is reformed as follows . Let (&) be a Riemannian manifold with the Riemannian metric £ , then we
denote by A the Laplacian associated with the Riemannian metric £ a functionf is said to sub harmonic or harmonic if satisfies
Af>20 or Af=0

Defection 3.2.2

For a sub harmonic function on./ on Riemannian manifold M if there exist a pints in M at which attains the this property is to
give a certain condition for a sub harmonic function to be constant , when we give attention to the fact relative t these maximum
principles.

Definition 3.2.3Liouvile’s

(a)Let / be a sub harmonic function on K", if it is bounded then it is constant.(b) Let ./ be a harmonic functions on &" | mz3,
If it is bounded then it is constant . We are interested in Riemannian analogues of Liouvile,s theorem compared with these Last
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tow theorems we give attention to the fact that there is an essential difference between base manifold . In fact one is compact and

the other is complete and an compact , we consider have a family of Riemannian manifold (M.g)at the global situations it
suffices to consider a bout the family of complete Riemannian manifold of course , the subclass of compact Riemannian

manifolds. (M,g): is complete Riemannian manifold since a compact Riemannian manifold .

Theorem 3.2.4 [Complete Riemannian Manifold]

A let M be complete Riemannian manifold whose Ricci curvature is bounded from below , if C’ - nonnegative function /

satisfies Where A denotes the Laplacian on M , then / vanishes identically, the purpose of this theorem is t prove the following (
Leadville Type ) theorem in a complete Riemannian manifolds similar to theorem in a complete Riemannian manifold similar to
give anther proof of ( Nishikawas theorem ) . In this note main theorem is as follows

3.3 Riemannian Manifold whose Ricci is Bounded

Let M be a complete Riemannian manifold whose Ricci curvature is bounded from blew , if C’ - nonnegative function ./

satisfies Where G is any positive constant and 7 is any real number greater ./ vanishes identically .
Theorem 3.3.1 [Ricci Riemannian Manifold]

Let M an n-dimensional Riemannian manifold whose Ricci curvature is bonded from below on M |, Let G be a C - functions
bounded from below on M | then for any €20, there exists a point 2 such that

IVG(P)<e , AG(P)-¢ and inf G+&2G(p)

Proof :

In this section we prove the theorem stated in introduction first all in order prove theorem , then our theorem is directly obtained
as a corollary of this property and hence Nishikawas theorem is also a direct consequence of this ( Nishikawas one )

Theorem 3.3.2 [Manifold and Ricci Curvature]

Let M be a complete Riemannian manifold whose Ricci Curvature is bounded from blew , Let ¥ be any formula of the variable
F with constant coefficients such that F(f) =(C, f" +C, f"" +.ovvrrrve. +C [")+C.y Where 721 12n—k20 anq C,2C,, ifa

C. nonnegative function f satisfies . Then we have Where / denotes the super mum / the given function /.
Proof :

From the assumption there exists a positive number a which satisfies C.. £a"C, For the constant a given above the function
1-n
G(f) with respect to 1-variable f'is defined by (f +@) * | n is the maximal degree of the/ , then it is easily seen that Gis the
I-n
C” - function so that it is bounded from appositive by the constant @ *  and bounded from below by 0 , By the simple calculating
we have

n-1_"
vG=-222Gny
(53 G vr

1-n 2n n+1
Hence we get by using the above equation  —— G a1 Af=GAG-

below by the assumption and the function G defined above satisfies the condition that it is bounded from below , we can apply the

VG| Since the Ricci curvature is bounded from

n—1

theorem to the function G. Given any positive numberé  there exist a point P at which it satisfies ( 3.2) and ( 3.3) , ( 3.4) the
following relationship at .

L= G Py A2 —eGP) - "L g

n—

Can be derived , where G(P) denotes G(/®) thus for any convergent sequence e G, =Inf G | by taking a sub sequence , if
necessary because the sequence is bounded and therefore each term G(F,)of the sequence satisfies equation we have
G(P,) > G,=Inf G and the assumption 7 =1 An the other hand it follows from ( 5.2) we have
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1- 20 1
RGR)T AR 26, G(R) ",
=

And the right side of the a above inequality converges to zero because the function G is bounded by choosing the constant a it
n+1

. l-n . .
satisfies Ci@ <G, A accordingly there is a positive number O such that ™ C.oa"<o< C, ,Gis the constant

coefficient of the maximal degree of function F so for a given such that @6 20 | we can take a sufficiently large integer 7 such
that
I-n

(3.5) G(P)" F(f(P.))2~5

Where we have used the assumption equation ( 3.2 ) of the theorem ( 3.2.6) and equation (3.4) so this inequality together with the
28
definition of G(F,) Yield F(/(F,)) = ——(f+a) (F)’

Remark 3.3.4

Suppose that a nonnegative function / satisfies the condition we can directly yield V/ " =(n-Df" V[,
(3.6) Af ==D)(n=2) 7V Y N +=DfA f

n=1

we define a function 2by /"', if n>2 then it satisfies Ah>(n—1) Ch* Thus concerning the theorem in the case n > 2 the
condition (2.7) is equivalent! < n < 2 where G is a positive constant.

Definition 3.3.5 :[Hypersuface on Curvature> 4, |

Let U be an open set in the Riemannian manifold (M, g)then .(a) oU has mean curvature = H, in the sense of contact

hypersurfaces iff for all ¢€0U and &> Othere is an open set D of M with D= U and g eaDnearq is a Chypersuface of Mand at
point ¢, # > H, - ¢ .(b) 8U has mean curvature = H,in the sense contact hypersurface is constantC, > 0 so that for all ¢ €k and

£20there is openset D of M with D< U and ¢<€0D the of dD near 4, H” > H, - ¢ and also H” > -C,,

Theorem 3.3.6

Let (M.2)be a Riemannian manifold U,.U, < M open sets and let H, be a constant , assume that .(a) U, nU, =0 (b) 8U, has
mean curvature =—Fin the sense of contact hyper surfaces. (c) oU, has mean curvature = in the sense of contact

hypersurfaces with a one sided Hessian bound .4. there is a point P € U,nU and a neighborhood & of P that has coordinates

Lipschitz continues and there are Lipschitz continuous function U,,U, 1< (X',xz, ---------- X" |x' SV) } (-r.r)so that Uy NN are
given by
(54) Uo,Nz{(xl,xz, ....... x”):x” >U, (xl,xz, ......... ,x”’l) } ’ Ul,Nz{(xl,xz, ....... ,x"):x" >U, (xl,xz, ......... ,x”’l) }

This implies U, =U and Uyis smooth function , therefore 0U, N N= 0U NNis a smooth embedded hyper surface with

constant mean curvature 1, ( with respect to the outward normal to U, ).
Definition 3.3.7

Let M, and M , be differentiable manifolds a mapping ¢ : M, - M , is a differentiable if it is differentiable , objective and its

inverse ¢ "' is diffeomorphism if it is differentiable ¢ is said to be a local diffeomorphism at p e M if there exist
neighborhoods U of p and ¥ of @ (p) such that ¢ :U — V is a diffeomorphism , the notion of diffeomorphism is the natural
idea of equivalence between differentiable manifolds , its an immediate consequence of the chain rule thatif ¢ : M|, > M ,isa
diffeomorphism thend ¢ : T, M, > T, ,,M , . Is an isomorphism for all ¢ : &, — M , in particular , the dimensions of M | and

M , are equal a local converse to this fact is the following de¢:T,M, — T, M ,is an isomorphism then ¢ is a local

o (p)

diffeomorphism at p from an immediate application of inverse function in R" , for example be given a manifold structure again
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A mapping f ':M — N in this case the manifolds N and & are said to be homeomorphism , using charts (U ,¢ ) and

(V,y) for N and M respectively we can give a coordinate expression /7 ‘M > N

Example 3.3.8

Let M ' and M ;' be differentiable manifolds and let ¢ : M , - M , be differentiable mapping for every p e M, and for each
veT, M, choose a differentiable curve o :(-¢,6) > M with a(M)=pand «'(0)=v take « o f = the mapping
de,:T,(p)M ,by givenby dp(v)=p'(M) is line of ¥ andg: M ' — M ;' be a differentiable mapping and at p « M | be

such dp: T, M, —T M, is an isomorphism then ¢ is a local homeomorphism

Theorem 3.3.9

The tangent bundle 77 has a canonical differentiable structure making it into a smooth 2N-dimensional manifold , where N=dim.
The charts identify anyU , e U(T,M ) c (TM ) for an coordinate neighborhoodU < M , withU x R " that is hausdorff and

second countable is called .The manifold of tangent vectors
Definition 3.310

A smooth vectors fields on manifolds M is map X :M — TM suchthat.(a) X (P)e T,M forevery G (b) in every chart x is

expressed as a, (8 / dx,) with coefficients a, (x) smooth functions of the local coordinates x; .

Theorem 3.3.11 tangent bundle 7/

The tangent bundle 7M has a canonical differentiable structure making it into a smooth 2N-dimensional manifold, where N=dim.
The charts identify anyU , € U (T,M ) < (TM ) for an coordinate neighborhoodU < M , withU x R " that is hausdorff and

second countable is called (The manifold of tangent vectors).

Definition 3.3.12

A smooth vectors fields on manifolds M is map X :M — TM such that (a) X (P)e T ,M for every G (b) in every chart X is

expressed as a, (0 / 0x,) with coefficients @, (x) smooth functions of the local coordinates X ; .

Conclusion

The paper study Riemannian differenterentiable manifolds is a generalization of locally Euclidean £” in every point has a
neighbored is called a chart homeomorphic , so that many concepts from as differentiability manifolds. We give the basic
definitions, theorems and properties of laplaian Riemannian manifolds be comes the specterurm of compact support M and Direct
comutation of the spaectrum, and spectral geometry of operators de Rham.
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