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INTRODUCTION 
 

 
Laplace – Beltrami operator plays a fundamental role in Riemannian geometric .In real applications, smooth metric surface is 
usually represented as triangulated mesh the manifold heat kernel is estimated from the discrete Laplace operator- Discrete 
Laplace – Beltrami operators on triangulated surface meshes span the entire spectrum of geometry processing applications 
including mesh parameterization segmentation. The Riemannian manifold with boundary, in the Euclidean domain the interior 
geometry is given, flat and trivial, and the interesting phenomena come from the shape of the boundary, Riemannian manifolds 
have no boundary, and the geometric phenomena are those of the interior. The present paper is an introduction, so we have to 
refrain from saying too must. To any compact Riemannian manifold (M,g) is boundary we associate  second- order (P.D.E) , the 

Laplace operator  is defined by :
 

)()( fgraddivf  for  ),(2 gMLf   . We also sometimes write g  for    if we want to emphasize 

which metric the Laplace operator is associated with the set of eigenvalues of   is called the spectrum of   or of M which we will 

write as space   or space  gM , they form a discrete sequence n  ....0 10  for simplicity For example, we will mainly 

consider compact Riemannian manifolds . The manifolds to investigated which are manifolds of systems of differential 
polynomials in a single unknown, possess a degree of analogy to bounded sets of numbers. They are manifolds which may be said 

( not to contain infinity as a solution ) U where each set U is homeoomorphic, via some homeomorphism h to an open subset 

of Euclidean space nR , let M be a topological space , a chart in M consists of an open subset MU  and a homeomorphism 

h of U onto an open subset of mR , a rC atlas on M is a collection   hU , of charts such that the U cover M and 1, 
hhB the 

differentiable vector fields on a differentiable manifold.Tangent space as  defined tangent space to level surface  be a curve is in 

 )(),....,(),(:, 21 ttttR nn   a curve can be described as vector valued function converse a vector valued function given 

curve , the tangent line at the point. 
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2.1 Basic on Laplacian Riemannian Manifold 
 
Definition 2.1.1  
 
A topological manifold M of dimension n , is a topological space with the following properties:   
 

(a) M is a Hausdorff space . For ever pair of points Mgp , , there are disjoint open subsets MVU , such that Up  and

Vg  .  

(b) M is second countable . There exists accountable basis for the topology of M . (c) M is locally Euclidean of dimension n   

Every point of M has a neighborhood that is homeomorphic to an open subset of nR . 
 
Definition 2.1.2  
 
A coordinate chart or just a chart on a topological n manifold M   is a pair ),( U , Where U is an open subset of M and 

UU
~

:   is a homeomorphism from U to an open subset nRUU  )(
~

 .  

 
Examples 2.1.3  
 

Let nS denote the (unit) n sphere, which is the set of unit vectors in  1nR : }1:{ 1   xRxS nn
 with the subspace topology, 

nS is a topological n manifold.    
 
Definition 2.1.4 [Projective spaces] 
 
The n dimensional real (complex) projective space, denoted by ))()( CPorRP nn

, is defined as the set of 1-dimensional linear 

subspace of )11  nn CorR , )()( CPorRP nn
is a topological manifold.  

 
Definition 2.1.5  
 

 For any positive integer n , the n torus is the product space )...( 11 SST n  .It is an n dimensional topological manifold.           

(The   2-torus is usually called simply the torus).  
 
Definition2.1.6  
 
The boundary of a line segment is the two end points; the boundary of a disc is a circle. In general the boundary of an n

manifold is a manifold of dimension )1( n , we denote the boundary of a manifold M as M . The boundary of boundary is 

always empty,  M  
 
Lemma 2.1.7  
 
Every topological manifold has a countable basis of  Compact coordinate balls.  ( B ) Every topological manifold is locally 
compact.  
 
Definitions 2.1.8  

Let M be a topological space n -manifold. If ),(),,(  VU are two charts such that VU , the composite map                                                                           

)()(:1 VUVU    is called the transition map from  to .  

 
Definition 2.1.9  
 
An atlas A is called a smooth atlas if any two charts in A are smoothly compatible with each other.  A smooth atlas A on a 
topological manifold M is maximal if it is not contained in any strictly larger smooth atlas. (This just means that any chart that is 
smoothly compatible with every chart in A is already in A.  
 
Definition 2.1.10  
 
A smooth structure on a topological manifold M is maximal smooth atlas. (Smooth structure are also called differentiable 

structure or C structure by some authors).  
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Definition 2.1.11  
 
A smooth manifold is a pair ,(M A), where M is a topological  manifold and A is smooth structure on M . When the smooth 

structure is understood, we omit mention of it and just say M is a smooth manifold.   
 
Definition 2.1.12    
 
Let M be a topological manifold. (i) Every smooth atlases for M is contained in a unique maximal smooth atlas. 
(ii) Two smooth atlases for M determine the same maximal smooth atlas if and only if their union is smooth atlas. 
 
Definition 2.1.13  
 

Every smooth manifold has a countable basis of pre-compact smooth coordinate balls. For example the General Linear Group The 

general linear group ),( RnGL is the set of invertible nn -matrices with real entries. It is a smooth 2n -dimensional manifold because 

it is an open subset of the 2n - dimensional vector space ),( RnM , namely the set where the (continuous) determinant function is 

nonzero.  
 

Definition  2.1.14  
 

Let M be a smooth manifold and let p be a point of M . A linear map RMCX  )(: is called a derivation at p if it satisfies : 

(1)                          XfpgXgpffgX )()()(   
 
for all )(, MCgf  . The set of all derivation of )(MC  at p is vector space called the tangent space to M at p , and is denoted by 

[ MT p
]. An element of MT p

is called a tangent vector at p .  

 

Lemma 2.1.15  
 

Let M be a smooth manifold, and suppose Mp  and MTX p . If f  is a const   and function, then 0Xf . If 0)()(  pgpf , 

then 0)( fpX .  

 

Definition2.1.16  
 
If   is a smooth curve (a continuous map MJ : ,where  RJ  is an interval) in a smooth manifold M , we define the tangent 

vector to   at Jt 
to be the vector MT

dt

d
t

tt )(
|)(

  










, where 

tdt
d | is the standard coordinate basis for RTt

. Other 

common notations for the tangent vector to   are 






  )(,)(


t
dt

d
t


 and 








 tt

dt

d
|


. This tangent vector acts on functions by : 

(2)    )(
)(

||)(






t

dt

fd
f

dt

d
f

dt

d
ft

tt


 











. 

 

Lemma 2.1.17   
 

Let M be a smooth manifold and Mp  . Every  MTX p is the tangent vector to some smooth curve in M .        

 

Definition 2.1.18  
 

A Lie group is a smooth manifold G that is also a group in the algebraic sense, with the property that the multiplication map 
GGGm : and inversion map GGm : , given by 1)(,),(  ggihghgm , are both smooth. If G is a smooth manifold 

with group structure such that the map GGG  given by  1),(  ghhg is smooth, then G is a Lie group. Each of the following 

manifolds is a lie group with indicated group operation. (a) The general linear group ),( RnGL is the set of invertible nn matrices 

with real entries. It is a group under matrix multiplication, and it is an open sub-manifold of the vector space ),( RnM , 

multiplication is smooth because the matrix entries of A and B . Inversion is smooth because Cramer’s rule expresses the entries 

of 1A as rational functions of the entries of A .  The n torus )...( 11 SST n  is an n dimensional a Belgian group.      

 

Definition 2.1.19 [ Lie Brackets] 
  
Let V and W be smooth vector fields on a smooth manifold M . Given a smooth function RMf : , we can apply V to f and 

obtain another smooth function Vf , and we can apply W to this function, and obtain yet another smooth function
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  )(VfWfVW  . The operation  fVWf  , however, does not in general satisfy the product rule and thus cannot be a vector 

field, as the following for example shows let 













x
V  and 














y
W on nR , and let yyxgxyxf  ),(,),( . Then direct 

computation shows that  1)( gfWV , while   0 fWVggWVf , so WV is not a derivation of )( 2RC  . We can also 

apply the same two vector fields in the opposite order, obtaining a (usually different) function fVW . Applying both of this 

operators to f and subtraction, we obtain an operator )()(:],[ MCMCWV   , called the Lie bracket of V and W , defined by  

    fWVfWVfWV ],[ . This operation is a vector field. The Smooth of vector Field is Lie bracket of any pair of smooth 

vector fields is a smooth vector field.  
 
Lemma 2.1.20 [ Properties of the Lie Bracket]  
 
The Lie bracket satisfies the following identities for all  XWV ,,  )(M . Bilinearity: Rba  , ,  
 

(3)                
].,[],[],[

,],[],[],[

WXbVXabWaVX

XWbXVaXbWaV





 
 
(i) Ant symmetry  ],[],[ VWWV  .   

(ii) Jacobi identity 0]],[,[]],[,[]],[,[  WVXVXWXWV . For )(, MCgf  :  

 
(4)  VfWgWgVfWVgfWgVf )()(],[],[   

     
2.3 Convector Fields 
 

 Let V  be a finite – dimensional vector space over R and let *V  denote its dual space.   Then *V  is the space whose elements are 

linear functions from V  to R , we shall call them Convectors. If *V  then RV :  for the any Vv  , we denote the value 

of   on v  by  v  or by ,v . Addition and multiplication by scalar in *V  are defined by the equations: 

(5)
               vvvvv     ,  2121

 

Where Vv   V ,,  and R . 

 
Proposition 2.3.1 [Convectors] 
 

Let V  be a finite- dimensional vector space. If ),...,( 1 nEE is any basis for V ,then the convectors ),...,( 1 n defined by: 

(6)        









jiif

jiif
E i

jj

i

0

1
)(   

form a basis for V ,called the dual basis to )( jE .Therefore, VV dimdim  . 

 
Definition 2.3.2 [Convectors on Manifolds] 
 

rAC Convector field   on M , 0r , is a function which assigns to each M  a convector  MTPp

  in such a manner that 

for any coordinate neighborhood ,U with coordinate frames
nEE ,..,1
, the functions   ,,.....,1  , niEi   are of class rC on U . 

For convenience, "Convector field” will mean C convector field. 
 
Remark 2.3.3 
 

It is important to note that a rC Convector field   defines a map    MC rM: , which is not only R – Linear but even 

 MCr  Linear, More precisely, if  MCgf r,  and X  and Y  are vector fields on M , then 

     YgXfYgXf    . For these functions are equal at each Mp  .                                                                                                                            

 

Corollary 2.3.4 
 

Using the notation above let  in

i i w~
1




   on V , and let   jm

j j
wF 




1

*  onU ,where
v and j are functions on V and U

respectively, and ji ww ,~  are the coordinate co frames. Then 
 




m

j

j

j

i

i w
x

y
wF

1

* )~(     and     F
x

y
i

n

i
j

i

j
 

 




1
.  For ni ,......,1   
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and .,.....,1 mj  The first formulas give the relation of the bases; the second those of the components. If we apply this directly to a 

map of an open subset of mR  into nR , these give for  idyF*   the formula   

(7)                 nidx
x

y
dyF jm

j j

i

i ,......,1,
1

* 



 


  

 
2.4 The Spectrum of the Laplacian in Riemannian Manifolds  
 
To any compact Riemannian manifold (M,g) is boundary we associate  second- order (P.D.E) , the Laplace operator  is defined 

by :
 

)()( fgraddivf  for  ),(2 gMLf   . We also sometimes write g  for    if we want to emphasize which metric the 

Laplace operator is associated with the set of eigenvalues of   is called the spectrum of   or of M which we will write as space   

or space  gM , they form a discrete sequence n  ....0 10  for simplicity , we will assume that M  is connected . This 

will for example imply that the smallest eigenvalue 0  . Occurs with multiplicity. 

 
Definition2.4.1  
 

If L is aliner operator defined on MTp , then the spectrum of L is the set of eigenvalues of L .It is denoted by space ( L ) . We take 

the Laplace operator   defined as  dd   , where   is adjoin of d in spectral geometry we consider the following two 

equations: 
 
(i)  Does the spectrum of M determine the geometry of M. 
(ii) Does the geometry of M determine the spectrum of M. 
 
proposition 2.4.2 : [Spectrum Riemannian] 
 
The geometry of Riemannian manifold completely determines the spectrum the metric determines the Laplace operator is 
spectrum. 
 
Definition 2.4.3: [Sequences be Spectra]  
 
Sequences occur can as the spectra of manifolds a version of this question.  Has been answered what finite sequences can occur as 
the initial part of spectra of  manifolds. If M  is a closed connected manifold of dimension greater that or Equal to 3, the any p  

reassigned finite sequence k  ....0 10 is Sequence of first 1k  eigenvalues of g  for some choice of the metric g on M

. In particular, this means that for closed connected manifolds of dimension 3 or Greater, there are no restrictions on the 
multiplicities of the eigenvalues

i
   for 0i   . In 2-dimension , there are some restrictions on the multiplicities of the eigenvalues. 

Let M  be a closed connected 2-manifold with Euler characteristic )(M , and let jm  be the multiplicity of the  thj    

eigenvalue  0j  of the laplacian operator associated to a metric on M then : . If M  is the unit sphere, then 12  jjm    
 

 If M is the real projective plane , then 32  jjm    

 If M is the torus , then 42  jjm   

 If M is the klen bottle , then 32  jjm   

 If , 0)( M then 3)(22  Mm jj   

 
[Note] 
 

For finite sequences k  ....0 10   however the result by-colin de verdiere holds – even in dimension 2. 

 
2.5 [Estimates on the first Eigenvalue] 
 
The geometry of a manifold affects more that the multiplicities of the eigenvaluees. Here we will focus on bounds on the first non-

zero eigenvalue 1  imposed by the geometry [the first lower bound is due to lich neowicz]. 

  
Theorem 2.5.1: [Ricci Tensor] 
 
Let  gM ,  be a closed Riemannian manifold of dimension 2n and let Ric be its Ricci tensor field if. 
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(8)                            Ric     01,  knXX
 

 

For some constant 0k  , and for all )(MTX  , then kn
1

 . 

  
Theorem 2.5.2 
 
Let  gM ,  be a closed Riemannian manifold, if     01,  knXX  Ric. For some nonnegative constant k   and for all 

)(MTX   then. 
 

(9)                              
 

)(4

1
2

2

1
MD

n 
 




 
 

It is in general much easier to given upper bounds on
1

   that it is give lower bounds. The basic result in this area is a comparison 

theorem due to a complete Riemannian n- manifold whose Ricci curvature is   kkn ,1   is some const. 
 

Definition 2.5.3  
 

We mentioned a above that a metric g , defines an inner product not just on
a

T  but also an inner product *g  on *

a
T , with this we 

can define an inner product on pth exterior power 
 

(10)  *

a
T P :    

iiPP
gDet  ,..........,......... *

2121
                 

                             

Thus if 
n

dxdxdx  ............
21

defines the orientation nij
dxdxgw  .........det

1  

On a compact manifold we can integrate this to obtain total volume – so a metric defines not only length but also volumes, Now 

take **,
a

Pn

a

P TT   and define     wfbyRTf a

P ,: * .But we have an inner product, so any liner map on *

a

PT   

is of the form   , for some *

a

PT so we have a well –defined liner map    form **

a

P

a

Pn TtoT  satisfying 

   w, . 

 
Definition 2.5.4: [Hodge Star Operator] 
 

The Hodge star operator is the linear map    MM PnP : with the property that at each point. 
 

(11)                                   w,                                                                    

 
Proposition 2.5.5: [Compact Support M manifold]  
 

Let M be an oriented Riemannian manifold with volume for w , and let    MM PP 1,   be forms of compact support then. 

(12)                                wdwd
MM
   ,,*  

 
Definition 2.5.6: [Deferential Laplacian on p-forms ] 
 

Let M be an oriented Riemannian manifold, then the Laplacian on p-forms is the deferential operator     MM PP  :   

defined by. 
 

(13)                                  dddd **:                      
 
Definition 2.5.7: [Starting Point] 
 

A differential form  MP is harmonic if 0 .On a compact manifold harmonic ply a important role, which there is no 

time to explore in this course. Here is the starting point. 
 
Definition 2.5.8:[Harmonic and de Rham  Manifold] 
 
Let M be a compact oriented Riemannian manifold then. 
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(i). a p-form is harmonic if and only if 0d and 0* d  
(ii) In each de Rham cohomology class there is at most one harmonic from 
 

Theorem 2.5.9: [Ricci Curvature] 

If M is a compact n-manifold with Ricci curvature     0,1  kkn , then 
 

)(4

1
2

22

1
MD

c
k

n



                                             

Where 
2

c  is positive constant depending only on N.  

 

2.6 [Geometric Implications of The spectrum] 
 
The spectrum does not in general determine the geometry of a manifold  Neverthless earthiness , some geometric information can 
be extracted from the spectrum . In what follows , we define a spectral invariant to be any thing that is completely determined by 
the spectrum. 
 
Definition 2.6.1  
 
Let M  be a Riemannian manifold. A heat kernel or alternatively fundamental solution to the heat equation, is a function

    MMMk ,0: . That satisfies  yxtk ,, is 1c in t and 2c in x and y ,   02 



k

t

k
where 

2
  is the Laplacian with 

respect to the  second  variable. 
 
(14)

                      
  )()(,,lim

0
xfdyyfyxtk

M
t


 

 

for any compactly supported function f   on M  .The heat kernel exists and unique for Riemannian  manifold , its importance 

stems from the fact that the solution to the heat equation 
 

(15)
                       

  RMuu
t

u





,0:,0)( .  

 

Where   is Laplacian with respect to second variable, with initial condition   )(,0 xfxu    is given by: 

 

(16)
                        


M

dyyfyxtkxtu )(),,(),(
 

 

If  
i

 in spectrum of M  and 
i

 are the associated eigenfunctions (normalized so the they form an orthonormal basis of  ML2

then we can write )()(),,( , yxeyxtk
ii

i

t 


  

),/(),/(
21

gGmspecgGmspec    from this it clear that the heat trace  


M i

tiexxtKtZ ,),,()(   spectral invariant . The heat trace 

has an asymptotic expansion as  0t . 
 

(16)
                         

j

i
j

M tattZ 


 2/dim)4()( 
 

 

Where the ja  are integrals over M of universal homogenous polynomials in the curvature and covariant derivatives. The first few 

of  these are : )(
0

Mvola 
 

 

(17)                    
222

21 25(,
6

1
RmRicSaSa

MM

 
 

 
Where S is the scalar curvature, Ric : is the Ricci tensor, Rm : is the curvature tensor. The dimension the volume and total scalar 
curvature are thus completely determined by spectrum. If M is a surface then the Gauss Bonnet theorem implies that the Euler 
characteristic of M is also a spectral invariant. Amore in depth study of the heat trace can yield more information of dimension 

6n  and if M has same spectrum as the n-sphere nS  with the standard metric  (resp . mRP ) then M M is in fact isometric to nS   

(resp. nRP ) more  on this can be found. 

 
Definition 2.6.2 [Isospectral Manifolds] 

 
As was alluded to earlier, geometry is not in general a spectral in variant two manifolds are said to be isospectral if they have the 
same spectrum. Of non isometric isospectral manifolds was found too distinct but isospectral manifolds. 
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2.7 [Direct Computation of The Spectrum] 
 
The first of those is straightforward: direct computation. it rarely possible to explicitly compute  the  spectrum of  a manifold were 
actually discovered via this method . Milnor’s example  mentioned  above  consists  of two isospectral  factory-quotients of  
Euclidean space by lattices of full rank being one of full rank being one of the few examples of  Riemannian  manifolds whose 
spectra can be computed explicicitly spherical space forms – quotients of spheres by finite groups of orthogonal transformations 

acting without fixed points form another class of examples of manifolds is spectral for the Laplaction acting on p-forms for kR     

but not  for the Laplaction acting on p-forms for  1 kR  (recall that a lens space is spherical space form where the group is 
cyclic. 
 
Theorem 2.7.1 
 
Let 

1
m and 

2
m  be compact discrete subgroup of a lie group G, and let g be    a left invariant metric on G if 

1
m  and 

2
m  are 

representation equivalent then ),/(),/(
21

gGmspecgGmspec 
 

 

2.8  Intrinsic Ultracontractivily on Bounded Bomains Manifolds 
 

We first consider on dR  let D  be aconnected bounded lipschitz domain in  1dR nd   . And   with laplacian with Dirichlet 

boundarg  conditions on D . It is well Know that the spectrum of   is discrete,
 

1)()(  i    with .....0 21    ,  and each

i   is an eigenvalue with finite multiplicity. Denote by D

t
P  The dirichlet heat kernel on D, and 0  the first normalized 

eigenfunction of    and D it is also well known that D is intrinsically ultracontractive (i.e). 
 

(18)             t
yx

yxp
e i

Dyx

t

t ,
)()(

),(
sup ,

1 


  
                         

 

Indeed, this is given true for more general domains such as holder domains of order o. The main purpose of this section is to 

clarify the short time behavior of t   For lipschitz domains. when D is a … domain. 
  

(19)                           0,1
2/)2(




tC
d

tt  
 

Holds for some constant 0  this estimate was extended recently to smooth compact Riemannian manifolds (under some 
additional) geometrical assumptions) our aim is to study similar estimate for less smooth domains D. we shall see that the 

estimate, holds for
,1C   domains for any 0 , If D is metrely lipchitzian (i.e) 

0,1C is no larger true. For instance, for  d
D 1,0   

one has ),()( )1,0(

1 iit

d

k
yxPx




,
),(sin)(

1 i

d

k
xx 


 . and where )(sin r   is the first dirichlet eigenfunction on [0,1]. Thus 

combining this with (2,33) below for,  )1,0(D  we obtain. 
 

(20)                     ]1,0(,
2

1 2/32/3   ttCt d

t

d        

 
For some constant 0C . A natatural question is there fore whether for lipschitz domain there exists a constant 0C   such that: 

(21)                              0,1  tCtt                                        

 

We shall see that the answer is no, in general .It is true that p

t
Ct1 . for some (qualitative) constant of the boundary.  

We prove that for any 0B , there exists alipschitz (connected) domain D such that t

Bt    is not bounded 0t    we summarize 

this as well as the large time behavior and a lower that domain D ia called Lipschitzian if for any Dx  . There exist 0S             

a coordinate system is called (Lipschilzian),   1,  dRRr  , and a Lipschitz function f on 1dR   such that x   is the origin and. 

 

(22)                
 
 )(:),(),(),(

)(:),(),(),(





frsrsxBDsxB

frrsxBDsxB




   

 

A Lipschitz domain is called
,1C   for some 0  , if the corresponding Lipschitz function satisfies. 

 

(23)
                         


baCbVaf  )()(

 
 

for some 0C  and for all,  
1,  dRba . In this definition it is required that 2   , if 1d  , D is an open bounded interval. 
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Theorem 2.8.1  
 

If D is a 
,1C - domain for some 0   , there exists a constant 0C  , such that. 

(24)      0,)(1
1

,1max )2(

2/)2(








 



tallforetCt
C

d

t

a


 

 

For any 0B  , there exists a bounded Lipschitz domain 2RD    such that :
 


 t

B

t
tSup 

0
lim . Now let M be a d-dimensional 

connected Riemannian manifolds and D an open bounded 
1,1C  domain in M. then for any Dx   there exist 0S , a local 

coordinate system in   1,  dRRr   in  sxB , . (The open geodesic ball at x with radius ,s) and )( 11  d

b
RCf   with bounded 

second derivatives such that (3,5) holds. For any. 
 

(25)     DsxBry  ),(),(    define 0)()(  fryf
 

 

Then DsxBry  ),(),(   has bounded seconed order derivatives furthermore there exists aconstant 0C   such that. 
 

(26)                 )(),(),()( ycFfrCyp  
 

 

Where   is the Rieman Don,1  nian distance to D . This by the partition of unity, there exists a non negative function  

)(1 DC
b

 with bounded derivative and 0
D

   such that: 

 

(27)                                   Don,1 
 

 

For some constant 01  , since D   is compact for simplicity we may and do assume that M is compact to. 
 

(28)                        XXNL i i
  1

2              

                              

Where X    is a bounded measurable vector field and  N

iiX
1
 are 

1C  vector fields we assume that L is elliptic that is. 

(29)   
   

)(,,0,)()()()(

,,,

1222

122

MCffrfrBfrf

CfffXff
N

i
i



 


 

 

For some constant 02   . Thus under a local coordinate system on has. 
 

(30)                              
i

d

i
iji

d

i
ji baL  

 11  
 

Where  
ddjia


is continous and strictly positive definite  dib

i
1   are bounded measurable. The L-diffusion process uniquely 

exists.  
 

For any D , Let ))(( xX
t   be the L-diffusion process starting from x   and,  DxXtxT

t
 )(,0inf)(  .For all bounded 

measurable function f  on D .To study the (ontrnsic ultracontractivity) of t
PD . We assume that L is symmetric w.r.t a probability 

measure )(dx  , dxDdx xv )(,1)(   where V  is abounded.Measurable function and )(dx  the Riemannian volume measure by the 

ellipticity and the sobolev in equality, we know that spectrum of L on D with dirichlet boundary condition is discrete, As in 

section 1, we let 21
   be the first two dirichlet eigenvalues and 0  the normalized first eigenfunction. 

 

Theorem 2.8.2   
 

 Let MD    be an open bounded
1,1C   domain and L a symmetric second order elliptic operator for some bounded measurable 

vector field X   and 
1C   - vector fields  N

iX 1  such that holds. Then for t
   defined in with the present  ,

1   and the transition 

density  . 
 

2.9 [Intrinsic ultracontractivity On complete Riemannian manifolds]  
 

Let M be complete, connected, non – compact Riemannian manifold of dimension d. Let VL   for some )(2 MC . Then L 

generates a unique   (Dirichlet) diffusion semi group t
P   on M which is symmetric in )(2 ML  , where dxe xV )( . for dx  the 
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Riemannian volume measure . A ssume that )(inf
1

L     is an eigenvalue of L   . Since M is connected 1
   has a unique unite 

eigenfunction 0 . In order to study the intrinsic ultracontractivity t
P  we make use of the following intrinsic super – poincare 

inquality introuduced. 
 

(31)   )(,0)(,)()()( 11222 MCfrMCfrfrf        

      

Which is equivalent to ),(),( gfgf     let Ric denote the curvature and ricci curvature on M respectively let  be the 

Riemannian distance on M , and simply write ),0(
0

   for fixed reference point M0   .Let k and K be two positive increasing 

function on ),0[    such that : 

 

(32)                 1,,sec
00000
  kRick

 
 

Holds on M. here 00
k . means that for any Mx   and unit vectors x

TYX , with 0, YX  , one has kYX ),(sec  or 

))((),(
0

xkYX  while 00
kRic  means that ))((),(

2

0
XxkYXRic    for any Mx   and x

TX  for a positive increasing 

function h , on ),0(   we let 

 

(33)                     0)(,0inf)(1  rshsrh  

 
Theorem 2.9.1 
  
 Let M be a cartan –Hadamard manifold with 2   , and let L   A assume that (3,15) holds for some positive incrasing 

functions k  with )(k . We have  )(L
ess   holds with. 

 

(34)              )(24()/(exp)( 112  


 kkrkrr
d

 
 

For some constant 0  
 

If 1,)(24()( 11   RCRRkkRk    
 

Holds for some constants 0C  and )1,0( , then t
P  in intrinsically ultra contractive with. 

 

If , holds for comfort some 0C   and 1 , then t
P  is intrinsically hyper contractive , if k  for some constant 0k , then 

0)( 
ess

  since M is non-compact and complete, this follows from a comparison for the first Dirichlet eignvalue and the donnely

i
L decomposition principle for rhe essential spectrum. )()1,((sup)(inf

11
kxB

Mxess
 

 . Where )1.(
1

xB  is first Dirichlet  

eigenvalue of   on D and Where )(
1

k  is one on unite geodesic ball in the d-dim. parabolic space with Ricci curvature equal to

k  .Thus the assumption )(k  is also reasonable . Next, we consider the case with drift. To this end, we adopt the following 

Bakry – Emery curvature lmRic , . Instead of Ric. A ssume that for some 0 , and positive increasing function k   on has instead of 

the second condition in 
 

(35)
                 

00,
k

m
HRicRic vv

essml v




      

                     

Moreover, let r  be a positive increasing function on ],0(   such that 1,
0000

  rL  

                                                      

Theorem 2.9.10 
 

Let o be s pole in M such that hold for some increasing positive functions k    and )(r , then 0)( L
ess

   moreover, assuming. 
 

(36)                       0
)1.((log

))(22(
lim 0

0 )( 



xB

xk
x 



   
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Where )1,(xB  is the unit geodesic ball at, we have  

holds with. 
 

(37)             0,)4(/32exp)( 12/)1(    krrrrB dm

 
 

For there some constant 0    
 

If there exist 0C   and )1.0(   such that 1,))(22()( 11   RCRRrkRr   then t
P  is intrinsically ultra contractive and 

(3,18) holds for some constant 0C   .If (3,20) holds for some 0C   and 1  then t
P  is intrinsically hyper contractive. 

 
Example 2.9.11 
 

let M be a Cartan-Hadamard manifold with )(
)1(2

0


 CRic For some constants 0C  and α >1, let 0

v  for some constant 

0  and 1
0
  ,then 0)( L

ess
  and (2.33) holds 0C For some constant 0C  consequently. t

P is is intrinsically ultra 

contractive if and only if 
21

,  2 , and when   0,exp 2/

11)(2
  ttLP MLt 

 . For some constants 0,
21
 , which is 

sharp in the sense that constant 2
   can not be replaced by any positive function   0

2
t as 0t . t

P is intrinsically 

hypercontractive if and only if 2,
21
 . 

 
2.10 The Spectral Geometry of operators of Dirac and Laplace Type 

 
We have also given in each a few additional references to relevant. The constraints of space have of necessity forced us to omit 
many more important references that it was possible to include and we a apologize in a dance for that. We a the following 

notational conventions, let (M,g) be compact Riemannian manifold of dim. M with boundary M Let Greek indices  ,  range 

from 1 to  m , and index a local system of coordinates  mxxx ...,,.........1  on the interior of M expand the metric in the form



 dxdxgdS 2  were  
 xx

g  ,  and where we a dopt the Einstein convention of summing over repeated indices we let 
g be 

the inverse matrix the Riemannian measure is given by  mdxdxdx ...,,.........1 for  gg det let   be the levi-Civita  

connection. We expand   xxx  .,  .Where   are the m R are may then be given by. 
 
 

(38)                      YXXYYXYXR ,, 
 
and given by    WZYXRgWZYXR ,),,(,,,      

                                   

We shall let Latin indices i,j range from 1 to m and index a local orthonormal frame  
m

ee ...,,.........
1

for the components of the 

curvature tensor scalar curvature  Are then given by setting ikkiijijkkij RandR   . We shall often have an auxiliary vector 

bundle set V and an auxiliary given on V , we use this connection and the “ Levi-Civita” connection to covariant differentiation, 

let dy be the measure of the induced metric on boundary M , we choose a local orthonormal from near the boundary M , so that 

 
m

e  is the inward unit normal. We let indices  ba,  range from 1 to m-1 and index the induced local frame    
11

,......,
m

ee for the 

tangent bundle f the boundary, let   
megba eebL

a
,,  denote the second fundamaental form. We some over indices with the implicit 

range indicated. Thus the geodesic curvature gK is given by aag LK  . We shall let denote multiple tangential covariant 

differentiation with respect to the “ Levi-Civita” connection the boundary the difference between and being of course measured by 
the fundamental form. 
 
2.11 [The Geometric of Operators of Laplace and Dirac Type] 
 
In this section we shall establish basic definitions discuss operator of Laplace and of Dirac type introduce the De-Rham complex 

and discuss the Bochner Laplacian and the weitzenboch formula. Let D be a second of smooth sections  vC  of a vector bundle v 

over space M, expand. 
 

(39)                         bxaxxaD v

v  







 
 

where coefficient  baa v ,,   are smooth endomorphism’s of v, we suppress the fiber indices . We say that D   is an operator of 

Laplace type if 2A . On  vC is said to be an operator of Dirac type if 2A is an operator of laplace operator of Dirac type if and 

only if the endomorphisms v satisfy the Clifford commutation relations. 
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(40)                         v    idg vv  2 . 
 

Let A be an operator of Dirac type and let v

v
dx  be a smooth 1-form on M we let   v

v
v  define a Clifford module 

structure on V. This is independent of the particular coordinate system chosen. We can always choose a fiber metric on V so that 
  is skew adjoint. We can then construct a unitary connection  on V so that 0 such that a connection is called compatible 

the endomorphism if  is compatible we expand
A

v

xv
A   

,  
A

 is tensorial and does not depend on the particular coordinate 

system chosen it does of course depend on the particular  
compatible connection chosen. 
 
Definition 2.11.1 [The De-Rham Complex] 
 

The prototypical example is given by the exterior algebra, let  MC p  be the space of smooth p forms. Let 

   MCMCd pp 1:   be exterior differentiation if  is cotangent vector, Let wwext  :)(  denote exterior multiplication 

and let )int( be the Dual, Interior multiplication, )int()()(   extv define module on exterior algebra  M . Since 

 
vx

vdxvd  . d is an operator of Diract type the a associated laplacian. 
 

(41)             m

M

p

mmm d  ...........02
  

 

decomposes as the Direct sum of operators of laplace type p

m
 on the space of smooth p forms  MC p  on has

v

v

M xggxg   



10 it is possible to write the p-form valued Laplacian in an invariant form. Extend the “ Levi-Civita” comection 

to act on tensors of all types .Let vwg v

M w  ,
~

 define Bochner or reduced Laplacian, let R given the associated action of 

curvature tensor. The Weitzenbock formula terms of the Buchner Laplacian in the form 
 

(41)                      

  RdxdxwMM
2

1~


 
 

This formalism can be applied more generally.  
 
Lemma 2.11.2: [Spinor Bundle] 
 
Let D be an operator of Laplace type on a Riemannian manifold, there exists a unique connection  on V and there exists a 

unique endomorphism E of V, so that  ED
ii
 if we express D locally in the form  bxaxxgD  





 then the 

connection 1-form w of  and the endomorphism E are given by                                  

   










 
 wwwwxgbEandidgagw

E

E

2

1
            

      
Let V be equipped with an auxiliary fiber metric, then D is self-adjoin if and only if  is unitary and E is self-adjoin we note if D 

is the Spinor bundle and the Lichnerowicz formula with our sign convention that  )(
4

1
idJE   where J is the scalar curvature. 

 

Definition 2.11.3 [Heat Trace Asymptotic for closed manifold] 
 
Throughout this section we shall assume that D is an operator of Laplace type on a closed Riemannian manifold (M,g). We shall 

discuss the 2L  - spectral resolution if D is self adjoin, define the heat equation introduce the heat trace and the heat trace 
asymptotic present the leading terms in the heat trace. Asmptotics references for the material of this section and other references 

will be cited as needed, we suppose that D is self-adjoin there is then a complete spectral resolution of D on  vL2 . This means 

that we can find a complete orthonormal basis  
n

  for  vL2  where the 
n

 are a smooth sections to V which satisfy the equation 

nnn
D  

. 
 

 

Definition2.11.4  
 
Let V  be a vector space and V  are tensors. The product of   and  , denoted    is a tensor of order sr   defined by   

),....,(),....,(),....,...,...( 1111 srrrsrrr vvvvvvvv    . The right hand side is the product of the values of   and  . The product 

defines a mapping    ,  of  x  Vr
  Vsr . 
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Theorem 2.11.5 
 

The product  Vr o  Vr
   Vsr  just defined is bilinear and associative. If n ,....,1 is a basis of. 

 

(42)        V
 

!!....!

!...
....

21

21

21

k

k

k
rrr

rrr 
 

 
 

then     nii
r

rii  ,...,1/....
1

1  is a basis of  r
V .  Finally VWF :*

is linear, then       *** FFF  .   

 
Proof 
 

Each statement is proved by straightforward computation. To say   that   is bilinear means that if  ,  are numbers ,, 21   r
V  

and   Vr , then      .2121   Similarly for the second variable. This is checked by evaluating each 

Side on sr  vectors ofV ; in fact basis vectors suffice because of linearity Associatively,      , is similarly 

verified the products on both sides being defined in the natural way. This allows us to drop the parentheses. To see that 
rii   .....1 from a basis it is sufficient to note that if

nee ,...,1
is the basis of  V  dual to n ,....,1 , then the tensor rii ,...,1  

previously defined is exactly rii   .....1 .This follows from the two definitions: 
 

(43)      
   













rr

rr

rjj
rii

jjiiif

jjiiif
ee

,...,,...,1

,...,,...,0
,...,

11

11

1

...1 , 

 

and            ri

rj

i

j

i

jrj
ri

j

i

j

i

rjj
rii eeeee  ...,...,,...,.... 2

2

1

12

2

1

1

1

1  ,which show that both tensors have the same values on 

any (ordered) set of r basis vectors and are thus equal. Finally, given ,:* VWF   if Www sr ,..,1
, then 

     ))(),...,((,...,
*11

*

srsr
wFwFwwF


      ))(),....,(()(),...,( 1*1* srrr wFwFwFwF   =     ).,.....,(

1

**

sr
wwFF


   

 
Remark 2.11.7 
 

Let p   be an element of p p , p  an element of q . Then  
pq

pq

qp   )1( . Hence odd forms ant commute and the 

wedge product of identical 1-forms will always vanish.  
 
Remark 2.11.8 [Exterior Derivative]  
 
The exterior derivative operation, which takes p -forms into )1( p -forms according to the rule : 

(44) idxCC
i

1d0

x

f
d(f(x))  ;   )()(




                           ji dxdxCC 




 

i

jj

j

2d1

x

f
)(x)dxd(f  ;   )()(   

kji dxdxdxCC 



 

i

jkj

jk

3d2

x

f
)dx(x)dxd(f  ;   )()(   

Here we have taken the convention that the new differential line element is always inserted before any previously existing wedge 
products.  
 
Property 2.11.9 
 

An important property of exterior derivative is that it gives zero when applied twice:  .0pdwd  This identity follows from the 

equality of mixed partial derivative, as we can see from the following simple example:  

(45) )()()( 21d0   CCC d  

j

j fdxdf  , .0)(
2

1
 ji

ijji

ji

ji
dxdxffdxfdxddf  

Remark 2.11.10 
 

(i) The rule for differentiating the wedge product of a p -form p and a q -form q  is  
qp

p

qpqp ddd   )1()( . 

(ii) The exterior derivative anti-commutes with 1-forms.  
 
Examples 2.11.11 
 

Possible p -forms p  in two-dimensional space are: 
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(46) 

.),(

),(),(

),(

2

1

0

dydxyx

dyyxvdxyxu

yxf













 
 
 The exterior derivative of line element gives the two-Dimensional curl times the area 

dydxuvdyyxvdxyxud yx  )()),(),((  . 

 

The three-space p -forms p  are. 
 

(47)               

.)(

)(

321

3

21

3

13

2

32

12

3

3

2

2

1

11

0

dxdxdxx

dxdxwdxdxwdxdxw

dxvdxvdxv

xf

















 

We see that 

(48)               

.)(

2

1
)(

)(

321

3322112

1

1

321

33221121

dxdxdxwwwd

dxdxvd

dxdxdxwvwvwv

m

ijmkjijk













 
 

(Where ijk  is the totally anti-symmetric tensor in 3-dimensions).  

 
Definition 2.11.12 

 
An alternating covariant tensor field of order r  on M will be called an exterior differential form of degree  r  (or some time 

simply, r -form).The set  Mr of all such forms is a subspace of  r
M . 

 
Theorem 2.11.13 
 

Let )(M denote the vector space over R of all exterior differential forms. Then for  Mr  and  Ms , the formula , 

 
PPP     defines an associative product satisfying    

rs
1  . With this product,  M is algebra over R . If

)(MCf  , we also have        fff    If n ,...,1  is a field of co frames on M  (or an open set  U  of M ), 

then the set 

 
(49)                             niii

r
rii  ...1/...

21
1 

 
is a basis of  Mr   Uor  . 

 
Theorem 2.11.15 
 

If  NMF :  is a 
C mapping of manifolds, then     MNF :*  is an algebra homomorphism. (We shall call  M  the 

algebra of differential forms or exterior algebra on M ). 

 
Definition 2.11.16 
 
An oriented vector space is a vector space plus an equivalence class of allowable bases, choose a basis to determine the orientation 
those equivalents to it will be called oriented or positively oriented bases or frames. This concept is related to the choice of a basis 

  of  Vn . 
 
Lemma 2.11.17 

 
Let  0  be an alternating covariant tensor on  V  of order,  n  = dim V  and let 

n
ee ,...,

1
 .be a basis of  V . Then for any set of 

vectors
n

vv ,...,
1

, with ,
j

j

ii
ev  , we have ,      

n
j
in

eevv ,...,det,...
11

  . 
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Proof:  

 
This lemma says that up to a non vanishing scalar multiple   is the determinant of the components of its variables. In particular, 

If 
nVV  is the space on n-tuples and 

n
ee ,...,

1
 is the canonical basis, then  n

vv ,...,
1

  is proportional to the determinant whose 

rows are
n

vv ,...,
1

. The proof is a consequence of the definition of determinant. Given   and
n

vv ,...,
1

, we use the linearity and ant 

symmetry of   to write. 

 
(50)                    

njj
nj

n
j

n eevv ,...,...,...,
1

1
11    .  

 

Since   0,...,
1


njj ee , if two indices are equal, we may write  

           
n

j
in

n
nn

eeeevv ,...,det,...,)...(sgn,...,
11

1
11

    .The last equality uses the standard definition of determinant.  

 
Corollary 2.11.18 

 
Note that if 0 , then 

n
vv ,...,

1
 are linearity independent if and only if   0,...,

1


n
vv . Also note that the formula of the lemma 

can be construed as a formula for change of component of  , there is just one component since   1 Vn , when we change from 

the basis
n

ee ,...,
1

of V to the basis
n

vv ,...,
1

.These statements are immediate consequences of the formula in the lemma.  

 
Definition 2.11.19 
 

We shall say that M is orient able if is possible to define a 
C n form  on M  which is not zero at any point, in which case 

M  is said to be oriented by the choice of  . A manifold M is orient able if and only if it has a covering   ,U of coherently 

oriented coordinate neighborhoods. 

 
Theorem 2.11.20  
 

Let M be any 
C  Manifold and let  M  be the algebra of exterior differential forms on M .Then there exists a unique R -linear 

map    MMd
M

:  such that 

 (i) If   )(MCMf   , then dffd
M

 , the differential of f . 

         M

r

MM

sr dddthenMandM  1, (ii) 02 dM .This map will commute with restriction to open 

sets MU  , that is,  
UUUM

dd   , and map  Mr  into  Mr 1 . 

 
3.1 Riemannian Manifold 

 
A bilinear form on a vector space V  over  R  is defined to be a map RVV :  that is linear in each variable separately, that 

is, for  R ,  and Vwwwvvv 
2121

,,,,,
 

 

(51)      wvwvwvv ,,,
2121

       
211121

,,, wvwvwwv   . A similar definition may be made for a map 

of a pair of vector space WV  over R . A bilinear form on V are completely determined by their 
2n . Values on basis 

n
ee ,....,

1
of 

V . If njiee jiij  ,1),,( , are given and   j

j

i

i ewev  , are any pair of vectors inV , then bilinearity requires that

  n
ji

ji

jiwv 1,),(  .A bilinear form, or function is called symmetric if     vwwv ,,   , and skew–symmetric if

   vwwv ,,    asymmetric form is called positive definite if    0, vv  and if equality holds if and only if  ;0v in this case 

we often call    an inner product on  V .  

 
Definition 3.1.1 
 

A field   of rC bilinear forms,  0r , on a manifold M consists of a function assigning to each point P  of M , a bilinear form 

P
  on  MT

P
,that is, a bilinear mapping     RMTMT

PPP
: , such that for any coordinate neighborhood ,U , the function

 
jiij EE ,  , defined by  and the coordinate forms

n
EE ,...,

1
,are of class

rC . Unless otherwise stated bilinear forms will be
C . 

To simplify notation we usually write   
PP

YX ,  for  
PPP

YX , .  
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Definition 3.1.2  

 
Suppose VWF 


:  is a linear map of vector spaces and   is A bilinear form on V .Then the formula 

))(),((),)(( wFvFwvF


 
 
defines a linear form F  on W . 

 

Theorem 3.1.3 
 

Let NMF :  be a  
C  map and  a bilinear form of class 

rC  on N . Then *F  is a rC bilinear form on M . If   is 

symmetric (skew- symmetric), then *F is symmetric (skew- symmetric). 

 
Proof 
 

The proof parallels those of theorem and we analogously obtain formulas for the components of *F  in terms of those of   we 

suppose ,U  and ,V , are coordinate neighborhoods of  P  and of  PF with   VUF  .Using the notation of theorem we may 

write. 

(51)                    
jpipjpippji EFEFEEFp **

* ,,   . 

Applying as before, we have . 

      ).
~

,
~

(
)()(

1,
ptFpsF

n

ts ji

ts

ji
EE

xx

yy
p  

 


  

This gives the formula. 

(52)       ,,1,
1.

mjipF
xx

yy
p st

n

ts ji

ts

ji 



 


      

for the matrix of components  
ji of *F at  P  in terms of the matrix  

st
  of    at  pF . The functions ji thus defined are of 

class 
rC at least on  U  which completes the proof.  

 
Corollary 3.1.4 
 

If F is an immersion and   is a positive definite, symmetric form then  *F  is a positive definite, symmetric bilinear form.  

 

Proof:  
 

All that we need to check is that *F is positive define at each  MP  . Let
P

X  be any vector tangent to M at p . Then . 

(53)        0,,
**

* 
PPPP

XFXFXXF 
 
with equality holding only if   0

*


P
XF . However, since F  is an 

immersion,   0
*


P

XF .if and on only if 0
P

X . 

 
Definition 3.1.5  
 
A manifold M on which there is defined a field of symmetric, positive definite, bilinear forms   is called a Riemannian manifold 

and    the Riemannian metric. We shall assume always that   is of class
C . 

 
Dentition 3.1.6 [ Rings Riemannian]  
 
a Riemannian manifold , having define vectors and one-form we can define tensor , a tensor of rank ),( nm  also called ),( nm

tensor , is defined to be scalar function of m one-forms and v  vectors that is linear in all of its argument, if follow at once that 

scalars tensors of rank (0,0) , for example metric tensor scalar product equation VPVP


,
~

)(
~

 requires a vector and one-form 

is possible to obtain a scalar from vectors or two one-forms vectors tensor the definition of tensors , any tensor of )2,0( will give 

a scalar form two vectors and any tensor of rank )2,0( combines two one-forms to given )2,0( tensor field xg called tensor the

1
xg  inverse metric tensor , the metric tensor is a symmetric bilinear scalar function of two vectors that xg and xg is returns a 

scalar called the dot product . ),(..),( VWgVWWVWVg


 .Next we introduce one-form is defined as linear scalar 

function of vector )(
~

VP


is also scalar product VPVP
~

,
~

)(
~




 
one-form p~ satisfies the following relation. 

)(
~

)(
~

,
~

,
~

,)(
~

WPbVPaWPbVPaWbVaPWbVaP


  
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and given any two scalars a and b and one-forms QP
~

,
~

we define the one-form QbPa
~~

 by. 

)()(
~

,
~

,
~

,
~~

)()
~~

(

VQbVPa

VQbVPaVQbPaVQbPa







 

and scalar function one-form we may write )
~

()(
~

,
~

PVVPVP


 .For example 0,2  nm and 

)
~

,
~

()
~

,
~

()
~

,
~

()
~

,
~

(

)
~~

,
~~

(

SQbdTRQbcTSPadTRPacT

SdRcQbPaT




 

tensor of a given rank form a liner algebra mining that a liner combinations of tensor rank ),( nm is also a tensor rank ),( nm , 

and tensor product of two vectors A and B given a rank )0,2( , )
~

().
~

()
~

,
~

(, QBPAQPTBAT


 and  to denote 

the tensor product and non commutative ABBA


 and AcB


 for some scalar , we use the symbol  to denote the 

tensor product of any two tensor e.g BAPTP
~~~

 is tensor of rank )1,2( .   The tensor fields in inroad allows one to 

the tensor algebra )( MTA pR the tensor spaces obtained by tensor protects of space R , MT p and MT p
* using tensor defined 

on each point Mp  field for example M be n-dimensional manifolds a differentiable tensor )( MTAt pRp  are same have 

differentiable components with respect , given by tensor products of bases nkMT
x

p

p

k
,....,1, 











 and 

  MTdx pp

k * induced by all systems on M . 

 
3.2 Riemannian Manifold on Curvature Bounded 

 
Let M be complete Riemannian manifold with sectional curvature bounded below by a constant 2K                                                               
Let    MLSCvandMUSCu  be tow functions satisfying.        xvxuMxsup:0  . Assume that u and v are 

bounded from above and below respectively and there exists a function    .,0,0: W satisfying   .0lW when .0l and 

  00 W such that        yxdwyuxu , Then for each 0 there exist Myx  , , such that 

        yvJYqxuJXp   ,2,2 ,,, such that      
0

yuxu . And such that  

       lPlpYXlPqpyxd     ,,,      

          

Where    lpandyxdl  , is the parallel transport along the shortest geodesic connecting  yandx .We divide the proof into 

tow  

 

parts. [a]: without loss of generality , we assume that 0
0
 . Otherwise we replace u by 1

0
u for each 0 we take 

Mx 
ˆ such    

0

0ˆˆ 



 














 wxvxu . 

Part[2]: We apply  to       222
,ˆ

2
,ˆ

2
,

2
),( yxdxxdyxdyx 








  . We have for any 0 there exist

)()( ** MSTYandMTSX yx   such that .      xuJXyxDx

 ,2ˆ,, and      yuJXyxD
y

 ,2ˆ,, and the 

block diagonal matrix satisfies 2

0

01






 

























Y

X
I  

 

Corollary 3.2.1:[Complete Manifolds with Ricci Curvature Bounded] 
 

Let M be complete Riemannian Manifold with Ricci curvature bounded below by a constant   21 kn  and 2Caf function on 

M bounded from below then for any 0 there exist a point Mx  such that  

         xfxffxf ,,inf
 

 
Proof : 

 
Let wfvandfu .,inf  can be chose to be a linear function. It is straightforward to verify that all conditions in the theorem 

are satisfied. 
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3.1 Discrete Laplace-Beltrami operator metric 
 
Laplace – Beltrami operator plays a fundamental role in Riemannian geometric .In real applications, smooth metric surface is 
usually represented as triangulated mesh the manifold heat kernel is estimated from the discrete Laplace operator- Discrete 
Laplace – Beltrami operators on triangulated surface meshes span the entire spectrum of geometry processing applications 
including mesh parameterization segmentation.  
 
Definition 3.1.1 [Laplace – Beltrami Operator]  
 

Suppose ),( gM is complete Riemannian manifold, g  is the Riemannian metric,   is Laplace – Beltrami operator . The 

eigenvalue  n
 and eignfunctions  

n
 of   are 

nnn
  , where 

n
  is normalized to be orthonormal in  )(2 ML , the spectrum is 

given by 
n

  .........0
10

 and 
n

 then there is heat kernel )(),,(   RMMCtyxK such that   

)()(),,( yxetyxK
nn

tn 


                                                                     

heat kernel reflects all the information of the Riemannian metric. 
Theorem 3.1.2 
 

Let ),(),(:
22

gMgMf  diffeomorphism between two Riemannian manifold , If f is an isometric )()),((),,(
2

xftyMfKtyxK                      

0,,  tMyx   Conversely, if  f is subjective  map and equation  holds then f is an isomety. 
 

Definition 3.1.2 : [Polyhedral Surface] 
 

An Euclidean polyhedral surface is a triple ),,( dTS , S: is a closed surface, T: is a triangulation of S , d : is metric on S , whose 

restriction to each triangle is isometric to on Euclidean triangle. 
 

Definition 3.1.4 : [Cotangent Edge Weight]  
 

Suppose   
ji VV ,  is boundary edge of M and   MVV ji , , Then  

ji VV , is associated with one triangle  
kji VVV .,  the against  

ji VV ,  

at the vertex
k

V  is  then the weight of  
ji VV ,  is given by cot

2

1


ij
W  , otherwise if  

ji VV ,  is an interior edge the two angles are

 , then the weight is )cot(cot
2

1
 

ij
W . 

 

Definition 3.1.5 : [Discrete Heat Kernel] 
 

The discrete heat kernel is defined as, TCtK  )(exp)( 
 

 

Definition 3.1.6  
 

Suppose two Euclidean polyhedral surfaces ),,(
1

dTS  and ),,(
2

dTS are give 
21

LL  if and  
1

d and 
2

d differ by a scaling .  

Suppose two Euclidean polyhedral, surface ),,(
1

dTS  and ),,(
2

dTS are given 0)()(
21

 ttKtK  , if 
1

d  and 
2

d  differ by a 

scaling. 

 
Proof : 

 
Therefore the discrete Laplace metric and the discrete heat kernel mutually determine each other. We fix the connectivity of 

polyhedral surface ),( TS .Suppose the edge set of  ),( TS  is sorted as  
m

eeeE .......,,.........,
21

 where Em   , the face set as F and 

a triangle    FVVV kji ., as  Fkji ,, . We   denote an Euclidean polyhedral metric ).,,.........,(
21 m

dddd   where  REd : is the 

edge length function )(:
ii

edd is the length of edge 
i

e is   kjid ddddddE  ),()2( 321
 , Be the space of all Euclidean triangles 

parameterized by the edge where  kji ,, is a cyclic permutation of  3,2,1 . In this work for convene, we use ),........,,(
21 m

uuuu  . 

To represent the metric, where 2

2

1
kk

du   . 

 

Definition 3.1. 7: [Energy]  
 

An Energy RE
u
: is defined as  




),.....,2,1(

)1,.....1,1( 1
21

)().........,,(
muuu m

k
kkm

duWuuuE  . Where )(uW
k

the cotangent weight on the edge 
k

e

determined by the metric  . 
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Lemma 3.1.8 
 

Suppose nR , is an open convex domain in RERn :,  is a strictly convex function with positive definite Hessian matrix 

then nRE  : is a smooth embedding we show that 
u

 is a convex domain in  mR , the energy E  is convex . According to 

gradient of energy. 
 

mRdE  :)( , ),........,,()...,,.........,(
2121 mm

wwwuuuE 
 
is an embedding Namely the metric determined by the edge weight 

unique up to a sealing. 
 
Lemma 3.1.9 
 

Suppose an Euclidean triangle is with angles ),,( kji  and edge lengths ),,( kji ddd Angles are treated as function of the edge 

lengths ),( kjii ddd then  k

j

ji

i

i

A

d

dA

d

d



cos

2
,

2










 . Where A is the area of the triangle. 

Lemma 3.1.10  

In an Euclidean triangle, let  2

2

1
ii

du    and  2

2

1
jj

du  , then 
i

j

j

i

uu 






  cotcot
       

 

Corollary 3.1.11  
 

The differential form  kkjjii dududuW  cotcotcot   . Is a closed 1-form.  

 
Corollary 3.1.112 [Open Surfaces] 
 

The mapping on an Euclidean polyhedral surface with boundaries  ),........,,()...,,.........,(:
2121

,

mm

m

u
wwwuuuRE   is 

smooth embedding, it can proven using double covering technique.  
 
3.2  [A Liouville Type Theorem for Complete Riemannian Manifolds] 
 

First we consider the most popular maximum principle, let U be an connected set in an m-dimensional Euclidean space mR  and 

 jx  a Euclidean coordinate. We denote by L a differential operator defined by. 
 

(3.1)                                                                              
j

j

ji

ji

x
b

xx
aL









 

2

        

                                        

Where ija and jb are smooth function on U for any indices . When the matrix ija is positive definite and symmetric , it is called a 
second order elliptic differential operator . We assume that L is an elliptic differential operator . The maximum principle is 
explained as follows. 
 

Defections 3.2.1 [Maximum Harmonic on Riemannian Geometry]  
 

For a smooth function f on U if it satisfies  0Lf  , and if there exists a point in U at which it attains the maximum , namely , if 

there exists a point  0x in U at which )()(
0

xfxf  , for any point x  in M then the function f is constant. In Riemannian 

Geometry . this property is reformed as follows . Let ),( gM be a Riemannian manifold with the Riemannian metric g , then we 

denote by  the Laplacian associated with the Riemannian metric g a function f is said to sub harmonic or harmonic if satisfies  
00  forf       

                                                                      

Defection 3.2.2  
 

For a sub harmonic function on f   on Riemannian manifold M if there exist a pints in M at which attains the this property is to 
give a certain condition for a sub harmonic function to be constant , when we give attention to the fact relative t these maximum 
principles. 
 
Definition 3.2.3Liouvile,s  
 

(a)Let f  be a sub harmonic function on 
nR , if it is bounded then it is constant.(b) Let  f  be a harmonic functions on 

nR  , 3m . 
If it is bounded then it is constant . We are interested in Riemannian analogues of Liouvile,s theorem compared with these Last 
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tow theorems we give attention to the fact that there is an essential difference between base manifold . In fact one is compact and 

the other is complete and an compact , we consider have a family of Riemannian manifold  ),( gM at the global situations it 
suffices to consider a bout the family of complete Riemannian manifold of course , the subclass of compact Riemannian 

manifolds. ),( gM : is complete Riemannian manifold since a compact Riemannian manifold . 
 
Theorem 3.2.4 [Complete Riemannian Manifold] 
 

A let M be complete Riemannian   manifold whose Ricci curvature is bounded from below , if  
2C - nonnegative function f  

satisfies Where  denotes the Laplacian on M , then f vanishes identically, the purpose of this theorem is t prove the following ( 
Leadville Type ) theorem in a complete Riemannian manifolds similar to theorem  in a complete Riemannian manifold similar to 
give anther proof of ( Nishikawas theorem ) . In this note main theorem is as follows  
 
3.3 Riemannian Manifold whose Ricci is Bounded  
 

Let M  be a complete Riemannian manifold whose Ricci curvature is bounded from blew , if  
2C - nonnegative  function f

satisfies Where 0
C is any positive constant and n  is any real number greater f  vanishes identically .   

 
Theorem 3.3.1 [Ricci Riemannian Manifold] 
 

Let M  an n-dimensional Riemannian manifold whose Ricci curvature is bonded from below on M  , Let G be a 
2C - functions 

bounded from below on M  , then for any 0 , there exists a point p such that  
 

)(inf)(,)( pGGandPGPG    

 
Proof : 
 

In this section we prove the theorem stated in introduction first all in order  prove theorem , then our theorem is directly obtained 
as a corollary of this property and hence Nishikawas theorem is also a direct consequence of this ( Nishikawas one ) 
 
Theorem 3.3.2 [Manifold and  Ricci Curvature] 
 
Let M  be a complete Riemannian manifold whose Ricci Curvature is bounded from blew , Let F  be any formula of the variable

F with constant coefficients such that 1
1

10 )..............()( 
  k

kn
k

nn CfCfCfCfF  Where  1n   , 01  kn  and   10 


k
CC  if a

2C - nonnegative function f satisfies . Then we have Where 1
f denotes the super mum f the given function f . 

 

Proof : 
 

From the assumption there exists a positive number a which satisfies 01
CaC n

k


  For the constant a given above the function 

)( fG with respect to 1-variable f is defined by
2

1

)(
n

af


 , n is the maximal degree of the
f

, then it is easily seen that Gis the         

2C - function so that it is bounded from appositive by the constant 
2

1 n

a


   and bounded from below by 0 , By the simple calculating 
we have  
 

(53)                            fG
n

G n

n




 



1

1

2

1
      

                                          

Hence we get by using the above equation   
2

1

1

1

2

2

1
G

n

n
GGf

n

n
G

n










  Since the Ricci curvature is bounded from 

below by the assumption and the functionG defined above satisfies the condition that it is bounded from below , we can apply the 

theorem   to the function G. Given any positive number     there exist a point P at which it satisfies ( 3.2) and ( 3.3) , ( 3.4 ) the 
following relationship at P . 
 

21

2

1

1
)()()(

2

1










n

n
PGfPG

n
n

n

 
 

Can be derived , where )(PG denotes )( fG thus for any convergent sequence e GG inf
0
  , by taking a sub sequence , if 

necessary because the sequence is bounded and therefore each term )(
m

PG of the sequence satisfies equation  we have 

GGPG
m

inf)(
0
  and the assumption 1n .An the other hand it follows from ( 5.2) we have  
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21

2

1

1
)()()(

2

1
mmmm

n

n

m
n

n
PGPPG

n










 
 

 And the right side of the a above inequality converges to zero because the function G is bounded by choosing the constant a it 

satisfies 01
CaC n

k


 , A accordingly there is a positive number   such that 01
2

1

2

1
C

n
aC

n n

k




 

   , 0
C is the constant 

coefficient of the maximal degree of function  F so for a given such that 0a , we can take a sufficiently large integer msuch 
that  

(3.5)                                                                                


 ))(()(
2

1
1

2

m
n

n

m
PfFPG

n
         

                                
Where we have used the assumption equation ( 3.2 ) of the theorem ( 3.2.6) and equation (3.4) so this inequality together with the 

definition of )(
m

PG Yield  
n

mm Paf
n

PfF )()(
1

2
))(( 





                                  

 

Remark 3.3.4  
 

Suppose that a nonnegative function f satisfies the condition we can directly yield  ffnf nn   21 )1(  ,                                                                                         

(3.6)                                                                   
ffnfffnnf nnn   231 )1()()2()1(

 
 

we define a function h by 
1nf , if 2n then it satisfies 

2
0)1( hCnh   Thus concerning the theorem in the case 2n the 

condition (2.7) is equivalent 21  n  where 1C  is a positive constant. 
 

Definition 3.3.5 :[Hypersuface on Curvature 0H ]   
 

Let U be an open set in the Riemannian manifold  gM , then .(a) U has mean curvature 0H  in the sense of contact 

hypersurfaces iff for all Uq  and 0 there is an open set D  of M with 


 UD and Dq  near q  is a C hypersuface of Mand at 

point q , 
0HH D

q .(b) U has mean curvature 0H in the sense contact hypersurface is constant 0kC  so that for all kq  and 

0 there is open set D   of M with 


 UD and Dq  the of D near q, 
0HH D

q and also 
DKg

D
q CH



  . 
 

Theorem 3.3.6 
 

Let  gM , be a Riemannian manifold MUU 10 , open sets and let 0H be a constant , assume that .(a) 010  UU  (b) 0U has 

mean curvature 0H in the  sense of contact hyper surfaces.  (c) 1U has mean curvature 0H in the sense of contact 

hypersurfaces with a one sided Hessian bound .4. there is a point 


 UUP 0 and a neighborhood N of P that has coordinates 

 nxxx ,......, 21

cantered at P so that for some 0r the image of these coordinates is the box  nxxx ,......, 21

= rx i  and there are 

Lipschitz continues and there are Lipschitz continuous function   rxxxxUU in  :.,,.........,:, 121

10  ,  rr , so that NU 0 are 

given by 
 

(54)            121
0

21
0 .,,.........,:,.......,,,  nnn xxxUxxxxNU        ,             121

1
21

1 .,,.........,:,.......,,,  nnn xxxUxxxxNU       
             

This implies 10 UU  and 0U is smooth function , therefore NUNU 
10 is a smooth embedded hyper surface with 

constant mean curvature 0H ( with respect to the outward normal to 1U ). 
  
Definition 3.3.7 
 
Let 

1M and 
2

M be differentiable manifolds a mapping 
21: MM  is a differentiable if it is differentiable , objective and its 

inverse 1 is diffeomorphism if it is differentiable   is said to be a local diffeomorphism at  Mp  if there exist 

neighborhoods U of p and V of )( p such that VU : is a diffeomorphism , the notion of diffeomorphism is the natural 

idea of equivalence between differentiable manifolds , its an immediate consequence of the chain rule that if 
21: MM  is a 

diffeomorphism then 2)(1: MTMTd pp   . Is an isomorphism for all 
21: MM  in particular , the dimensions of 

1
M and 

2
M are equal a local converse to this fact is the following 2)(1: MTMTd pp   is an isomorphism then  is a local 

diffeomorphism at p from an immediate application of inverse function in nR , for example be given a manifold structure again 
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A mapping NMf  :1 in this case the manifolds N and M are said to be homeomorphism , using charts ),( U and 

),( V for N and M respectively we can give a coordinate expression NMf :
~

   

 
Example  3.3.8 
 
Let 1

1
M and 1

2
M be differentiable manifolds and let 

21: MM  be differentiable mapping for every 
1Mp  and for each

1MTv p choose a differentiable curve 
1),(: M  with pM )( and v )0( take   the mapping 

2)(: MpTd p  by given by )()( Mvd   is line of  and 1
2

1
1:   MM be a differentiable mapping and at 

1Mp  be 

such 21: MTMTd p   is an isomorphism then  is a local homeomorphism  

 

Theorem 3.3.9  
 
The tangent bundle TM has a canonical differentiable structure making it into a smooth 2N-dimensional manifold , where N=dim. 

The charts identify any )()( TMMTUU pp  for an coordinate neighborhood MU  , with nRU  that is hausdorff and 

second countable is called .The manifold of tangent vectors  
 
Definition 3.310 
 
A smooth vectors fields on manifolds M is map TMMX : such that . (a) MTPX p)( for every G (b) in every chart X is 

expressed as )/( ii xa  with coefficients )( xa i
smooth functions of the local coordinates ix .  

 

Theorem 3.3.11  tangent bundle TM  
 

The tangent bundle TM has a canonical differentiable structure making it into a smooth 2N-dimensional manifold, where N=dim. 

The charts identify any )()( TMMTUU pp  for an coordinate neighborhood MU  , with nRU  that is hausdorff and 

second countable is called (The manifold of tangent vectors). 
 
Definition 3.3.12 
 

A smooth vectors fields on manifolds M is map TMMX : such that (a) MTPX p)( for every G (b) in every chart X is 

expressed as )/( ii xa  with coefficients )( xai smooth functions of the local coordinates ix .  

 
Conclusion 
 

The paper study Riemannian differenterentiable  manifolds is a generalization of  locally Euclidean nE  in every point has a 
neighbored is called a chart homeomorphic , so that many concepts from as differentiability manifolds. We give the basic 
definitions, theorems and properties of laplaian Riemannian manifolds be comes the specterurm of compact support M and Direct 
comutation of the spaectrum, and spectral geometry of operators de Rham. 
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