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ARTICLE INFO  ABSTRACT 
 
 

It is important to have a critical view of the support provided by Artificial Intelligence (AI) in 
medical context, in order to trust this support. The objective was to measure/compare 
unidimensional uncertainty of an AI and a human performing the same task by a cross-sectional 
study. It was given to a simple algorithm written in Python (blob detection, OpenCV) and to an 
ophthalmologist the task of detecting a two-dimensional pattern (center of the optical disc) in 
1,000 digital images of normal/abnormal fundoscopies. Algorithm performed the task 1x, human 
performed the task 2x, both using digital register of spatial coordinates. Machine's unidimensional 
level of uncertainty was measured by the respective comparison of the x and y coordinates 
recorded by machine and human. Human's unidimensional level of uncertainty was measured by 
comparing the coordinates recorded by human itself. Data analysis was performed using R AI 
failed to detect the target pattern onlyin two images. On average, man and machine showed a 
higher level of uncertainty in the ycoordinates, which was greater (~100 units) in machine's 
performance. The measure of uncertainty of AI and humans in the same task can help understand 
AI limitations and define its usefulness as a medical support tool. 
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INTRODUCTION 
 
In the 1990s, a major paradigm shift emerged in medical diagnosis, 
entitled Evidence-Based Medicine, in which there was a proposal to 
include Clinical Epidemiology data in the professional decision-
making process, previously dominated by semiology and 
propaedeutics isolated from the organization of the science by 
Hippocrates. From this period onwards, scientific journals, books and 
medical conferences disseminated statistical terms such as Accuracy, 
Sensitivity, Specificity, Positive Predictive Value, Likelihood Ratio, 
Odds Ratio, Relative Risk, Number Needed to Treat and many others. 
We all had to adapt to this more precise medicine, both within the 
scope of research and in our daily work with the patient1. In recent 
years, a new revolution is taking place, the inclusion of the so-called 
Artificial Intelligences (AI) in the Health area.  

 
 
 
The need to learn to deal with these new tools, understand their 
concepts, metrics, applications and limitations already exist today. In 
several daily activities, from the use of a GPS application, text 
translation, or a simple search for terms in a browser, AI is already 
inserted, now, new applications have emerged in the field of 
Ophthalmology, such as IDx-DR, first automated diagnostic tool 
authorized by the Food and Drugs Administration (FDA) to perform 
the prediction of Diabetic Retinopathy through Retinography2. AI 
was conceptualized in 1956 after a workshop at Dartmouth College. 
The term Machine Learning (ML) was later used by Arthur Samuel in 
1959 who stated “The computer must have the ability to learn using 
various statistical techniques, without being explicitly programmed”. 
Using ML, the algorithm can learn and make predictions based on the 
data that was fed into the training phase, using either a supervised or 
unsupervised approach method. ML has been widely adopted in 
applications such as computer vision and predictive analytics using 
complex mathematical models. With the advent of graphics 
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processing units (GPUs), advances in mathematical models, the 
availability of large data sets and low-cost sensors, deep learning 
techniques - Deep learning (DL) - subsequently aroused fierce 
interest and were applied in many sectors. Thus, with the help of AI, 
professionals can reduce the costs of specialized care, in addition to 
the benefit of sharing the use of information systems, since the data 
generated by patient care can be aggregated and organized, producing 
a context that will also support the decision-making process. 
automated image recognition4. Decisions regarding patient treatment 
generating a direct impact on cost reduction in the health area3,4. AI 
offers a beacon of hope to improve some of the gaps inherent in 
human-operated healthcare including misdiagnosis, wasted resources 
and insufficient doctor-patient time resulting from the imbalance 
between demand and supply. Advances in AI have the potential to 
create wavefronts through teleophthalmology pathways in national 
health services. Automated image recognition allows computers to 
analyze and process retinal images and subsequently distinguish 
lesions through guideline scales previously learned by the AI 
algorithm. There is promise that the connection between AI and 
teleophthalmology will strengthen benchmarks and improve patient 
care4. AI involves DL through datasets without explicit programming, 
and DL involves additional self-training using "artificial neural 
networks". DL involves identifying a correlation between data in 
large neural networks in the data sets. Within image-based specialties 
such as ophthalmology, convolutional neural networks use labeled 
data to recognize patterns, with published evidence of their 
capabilities for diabetic retinopathy, glaucoma and retinopathy of 
prematurity and age-related macular degeneration, and even 
analyzing their clinical application. in cataract screening5. 
 

MATERIALS AND METHODS 
 
This project was approved by the Ethics Committee for Research with 
Human Beings (CAAE: 39292420.2.0000.5169). It is configured as a 
descriptive, analytical, observational and cross-sectional study, and is 
part of a line of research, which in addition to statistically comparing 
the performance of the AI tool with the ophthalmologist, aims to 
identify, propose corrections to the limitations of AI and develop new 
ones. proposed a tool in the evaluation of neuro-ophthalmological 
data. All data that were used in this project are contained in the files 
of RedCheck (Annex 1), a collaborating institution in this Project. 
The nature of the data is numerical and/or categorical, being relative 
to the results of normal fundus examinations (n = 500) and altered by 
different neuro-ophthalmological diseases (n = 500). The machine 
was fed with 1000 funduscopies to detect the center of the optic disc. 
Initially the image in JPEG format is converted from the BGR format 
to RGB, where the primary colors that make up each pixel (Red, 
Green and Blue) are reordered in their annotation. Then the image is 
converted to grayscale. Next, a dynamic threshold is applied to the 
grayscale image, basically, the value of each pixel is checked and in 
case it is above a threshold, it is increased to the maximum value 
(becoming completely white), and if is lower, it is reduced in value to 
the minimum (becoming completely black). 
 
In this way, on the image with applied threshold, the search of the 
optical disc region is performed through a Computer Vision method 
called SimpleBlobDetector, present in a free access library called 
OpenCV created by Intel®. If not found, the threshold cut-off values 
are adjusted again until the region is found or not. This method above 
finds regions (Contours) of pixels that maintain some relationship 
with each other due to their color characteristics, segmenting the 
image into its components. The Center for these components is found 
and registered. In order to be characterized as an Optical Disk, the 
contour in question must comply with some arbitrarily defined 
characteristics: 1 – A minimum area of 1 thousand pixels and a 
maximum of 10 thousand pixels; 2 – A minimum circularity of 0.1; 3 
– A minimum convexity of 0.1. The detection of the optic disc center 
was represented with the generation of 'X' coordinates and 'Y' 
coordinates from a Cartesian plane. There is no need for training, and 
the computational cost is low because it does not use artificial neural 
networks. Thus, considering the proposal to use a technique for 

preliminary screening of the Optical Disc region, it appears as a 
possible methodological option, in addition the technique can be 
applied in series or parallel with other methods to refine the accuracy. 
An experienced ophthalmologist volunteered in the same task, ie, to 
detect and digitally mark with a cursor the center of the optic disc in 
the same funduscopy images. Using the 1000 funduscopies, 500 
normal and 500 with various ophthalmological alterations, from the 
Red Check database, the ophthalmologist marked all the 
retinographies at first, and later marked them again, recording other 
data for comparative analysis with the first ones. 
 
When it is intended to evaluate the agreement between two methods 
that should measure the same amount, analyzes are used that are not 
always correct. It is important that the use of correlation is avoided in 
these situations and that the methodology is used properly, including 
the limits of agreement and their confidence intervals, in addition to 
commenting on whether the limits found are acceptable differences 
from a clinical point of view. The analysis of agreement between 
Bland-Altman methods is suitable for this comparison, precisely 
because it allows the comparison between means of results obtained 
with different measurement methods and the difference of results 
obtained by different methods (Bland-Altman, 1983). Data analysis 
was performed using the R statistical computing program (www.r-
project.org). from these coordinates, concordance analyzes were 
performed using the Bland-Altman and correlation calculations, 
generating comparative graphs in: 1st ophthalmologist observation 
versus 2nd ophthalmologist observation 'X' coordinate of normal 
funduscopy, 1st ophthalmologist observation versus 2nd observation 
ophthalmologist's 'Y' coordinate of normal funduscopies, 1st 
ophthalmologist observation versus 2nd ophthalmologist's observation 
'X' coordinate of altered funduscopies, 1st ophthalmologist's 
observation versus 2nd ophthalmologist's observation 'Y' coordinated 
of altered funduscopies, 1st ophthalmologist's observation versus 2nd 
ophthalmologist's observation 'X' coordinated of normal together with 
altered funduscopy, 1st ophthalmologist's observation versus 'Y'-
coordinated ophthalmologist's observation of normal together with 
altered funduscopies, 1st ophthalmologist observation versus 'X' 
coordinate machine in normal funduscopies, 1st ophthalmologist 
observation versus 'Y' coordinate machine in normal funduscopies, 
1st ophthalmologist observation versus 'X' coordinate machine in 
funduscopies altered, 1st ophthalmologist observation versus 'Y' 
coordinate machine in altered funduscopies, 1st ophthalmologist 
observation versus 'X' coordinate machine in normal and altered 
funduscopies, Ophthalmologist's 1st observation versus 'Y' coordinate 
machine on normal and altered funduscopies, ophthalmologist's 2nd  
observation versus 'X' coordinate machine on normal funduscopies, 
ophthalmologist's 2nd observation versus 'Y' coordinate machine on 
normal funduscopies, 2nd observation of the ophthalmologist versus 
the 'X' coordinate machine in altered funduscopies, 2nd observation by 
the ophthalmologist versus the 'Y' coordinated machine in altered 
funduscopies, 2nd observation by the ophthalmologist versus the 'X' 
coordinated machine in normal together with altered funduscopies, 
2nd observation by the ophthalmologist versus the 'Y' coordinate 
machine in normal and altered funduscopies. 
 

RESULTS 
 
In all graphs, the correlation analysis was strong, whereas the degree 
of agreement test had variations in the average differences of up to 
approximately 100 units. In the graphs of the ophthalmologist's 1st 
observation versus the ophthalmologist's 2nd observation 'X' 
coordinate with normal funduscopy, the correlation between the 
observations was strong (Figure 1) and the mean difference in the 
Bland-Altman analysis (Figure 2) was close to 0, showing good 
agreement. In the graphs of the 1st ophthalmologist's observation 
versus the 2nd ophthalmologist's observation 'Y' coordinate with 
normal funduscopies, the correlation was strong (Figure 3) and the 
mean difference was close to 0 in the concordance analysis (Figure 
4). In the graphs of the 1st ophthalmologist's observation versus the 
2nd ophthalmologist's observation 'X' coordinate with altered 
funduscopies, the correlation was strong (Figure 5) and the mean 
difference was close to 0 (Figure 6). 
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Figure 1. Correlation between the 1st and 2nd observation by the 
ophthalmologist X coordinate in normal funduscopies. R=0.96 

 
 

Figure 2. Degree of agreement between the 1st and 2nd 
observation by the ophthalmologist X coordinate in normal 

funduscopies 

 
 

Figure 3. Correlation between the 1st and 2nd observation by the 
ophthalmologist Y coordinate in normal funduscopy. R=0.96 

 
Figure 4. Degree of agreement between the 1st and 2nd observation by 

the ophthalmologist Y coordinate in normal funduscopies 
 

 
 
 

Figure 5. Correlation between the 1st and 2nd observation by the 
ophthalmologist X coordinate in altered funduscopies. R=0.96 

 
 

Figure 6. Degree of agreement between the 1st and 2nd  
observation of the ophthalmologist coordinate X in altered 

funduscopies 

 
 

Figure 7. Correlation between the 1st and 2nd observation of the 
ophthalmologist coordinate Y on altered funduscopies. R=0.96 

 
 

Figure 8. Degree of agreement between the 1st and 2nd observation by 
the ophthalmologist Y coordinate in altered funduscopies 
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In the graphs of the 1st ophthalmologist's observation versus the 2nd 
ophthalmologist's observation 'Y' coordinate with altered 
funduscopies, the correlation was strong (Figure 7) and the mean 
difference in the concordance analysis was approximately 1.25 
(Figure 8). In the graphs of the 1st ophthalmologist's observation 
versus the 2nd ophthalmologist's observation 'X' coordinate with 
normal funduscopies together with altered funduscopy, the correlation 
was strong (Figure 9) and the mean difference approached 0 (Figure 
10). In the graphs of the 1st ophthalmologist's observation versus the 
2nd ophthalmologist's observation 'Y' coordinate with normal and 
abnormal funduscopies, the correlation was strong (Figure 11) and the 
mean difference was around 8 units above 0 (Figure 12).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the graphs of the ophthalmologist's 1st observation versus the 'X' 
coordinate machine in normal funduscopy, the correlation was strong 
(Figure 13), whereas the mean difference was about 35 units above 0 
in the agreement analysis (Figure 14). In the graphs of the 
ophthalmologist's 1st observation versus the 'Y' coordinate machine 
in normal funduscopy the correlation was strong (Figure 15) and the 
mean difference was about 50 units above 0 (Figure 16). In the graphs 
of the ophthalmologist's 1st observation versus the 'Y' coordinate 
machine in normal funduscopy the correlation was strong (Figure 15) 
and the mean difference was about 50 units above 0 (Figure 16). In 
the graphs of the 1st observation of the ophthalmologist versus the 'Y' 
coordinate machine in altered funduscopies, the correlation was  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Correlation between the 1st and 2nd observation by the 
ophthalmologist X-coordinated in normal and abnormal funduscopies. 

R=0.96 

 
 

Figure 10. Degree of agreement between the 1st and 2nd observation by 
the ophthalmologist coordinate X in normal funduscopies together with 

altered ones 

 
 

Figure 11. Correlation between the 1st and 2nd observation by the 
ophthalmologist coordinate Y in normal and altered funduscopies. 

R=0.96 

 
 

Figure 12. Degree of agreement between the 1st and 2nd observation by 
the ophthalmologist Y coordinate in normal and abnormal funduscopies 

 
 

Figure 13. Correlation between the ophthalmologist's 1st observation 
versus 'X' coordinate machine in normal funduscopy. R=0.96 

 
 

Figure 14. Degree of agreement between the ophthalmologist's 1st 
observation versus 'X' coordinate machine in normal funduscopies 
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Figure 15. Correlation between the ophthalmologist's 1st  observation 
versus 'Y' coordinate machine in normal funduscopies. R=0.96 

 
 

Figure 16. Degree of agreement between the ophthalmologist's 1st 
observation versus 'Y' coordinate machine in normal funduscopies 

 
 

Figure 17. Correlation between the ophthalmologist's 1st observation 
versus 'X' coordinate machine in altered funduscopies. R=0.96 

 
 

Figure 18. Degree of agreement between the ophthalmologist's 1st 
observation versus 'X' coordinate machine in altered funduscopies 

 

 
 

Figure 19. Correlation between the ophthalmologist's 1st observation 
versus 'Y' coordinate machine in altered funduscopies. R=0.96 

 
Figure 20. Degree of agreement between the ophthalmologist's 1st 
observation versus 'Y' coordinate machine in altered funduscopies 

 

 
Figure 21. Correlation between the ophthalmologist's 1st observation 

versus 'X' coordinate machine in normal and altered funduscopy. R=0.96 

 

 
 

Figure 22. Degree of agreement between the ophthalmologist's 1st 
observation versus 'X' coordinate machine in normal and altered 

funduscopies. R=0.96 
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strong (Figure 19), the mean difference had a value of about 10 units 
above 0 (Figure 20). In the graphs of the 1st observation of the 
ophthalmologist versus the 'X' coordinate machine in normal and 
altered funduscopies, there was a strong correlation (Figure 21). The 
error size was approximately 75 units in the agreement analysis 
(Figure 22).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the graphs of the 1st observation of the ophthalmologist versus the 
'Y' coordinate machine in normal and altered funduscopies, there was 
a strong correlation (Figure 23). The average difference exceeded 100 
units far from 0 (Figure 24). The ophthalmologist's 2nd observation 
plots versus the 'X' coordinate machine on normal funduscopies had a 
strong correlation (Figure 25), and the error size was about 35 units 
above 0 (Figure 26). In the graphs of the ophthalmologist's 2nd 
observation versus the 'Y' coordinate machine in normal funduscopy 
the correlation graph was strong (Figure 27). The degree of 
agreement had an average difference of approximately 50 units 
(Figure 28). 
 

The graphs of the ophthalmologist's 2nd  observation versus the 'X' 
coordinate machine in altered funduscopies had a strong correlation 
(Figure 29) and the mean difference was approximately 50 units 
above 0 (Figure 30). In the graphs of the 2nd observation of the 
ophthalmologist versus the 'Y' coordinate machine in altered 
funduscopies, the correlation was strong (Figure 31).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The size of the difference between the observations was 
approximately 100 units (Figure 32). In the graphs of the 2nd 
ophthalmologist observation versus the 'X' coordinate machine in 
normal and altered funduscopies, the correlation was strong (Figure 
33) and the mean difference of the observations was approximately 
75 units above 0 (Figure 34). The graphs of the ophthalmologist's 2nd 
observation versus the 'Y' coordinate machine in normal together with 
altered funduscopies had a strong correlation (Figure 35), and the 
mean difference between the ophthalmologist's detection and the 
machine's detection was about 100 units above 0 (Figure 36). Figure 
37 summarizes the discordance results according to fundoscopy 
group, coordinates and observers. 

 
Figure 23. Correlation between the ophthalmologist's 1st observation 

versus 'Y' coordinate machine in normal and altered funduscopy. 
R=0.96. 

 
 

Figure 24. Degree of agreement between the 1st observation by the 
ophthalmologist versus the 'Y' coordinate machine in normal and 

altered funduscopies 

 
 

Figure 25. Correlation between ophthalmologist's 2nd observation versus 
'X' coordinate machine in normal funduscopy. R=0.96 

 
 

Figure 26. Degree of agreement between the ophthalmologist's 2nd 
observation versus 'X' coordinate machine in normal funduscopies 

 
 

Figure 27. Correlation between the ophthalmologist's 2nd observation 
versus 'Y' coordinate machine in normal funduscopies. R=0.96 

 
 

Figure 28. Degree of agreement between the ophthalmologist's 2nd 
observation versus 'Y' coordinate machine in normal funduscopies 
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Figure 29. Correlation between the ophthalmologist's 2nd observation 

versus 'X' coordinate machine in altered funduscopies. R=0.96 

 
Figure 30. Degree of agreement between the ophthalmologist's 2nd  
observation versus 'X' coordinate machine in altered funduscopies 

 
 

Figure 31. Correlation between the ophthalmologist's 2nd observation 
versus 'Y' coordinate machine in altered funduscopies. R=0.96 

 
 

Figure 32- Degree of agreement between the ophthalmologist's 2nd  
observation versus 'Y' coordinate machine in altered funduscopies 

 
 

Figure 33. Correlation between the 2nd observation of the 
ophthalmologist versus 'X' coordinate machine in funduscopies together 

with altered ones. R=0.96. 

 
 

Figure 34. Degree of agreement between the ophthalmologist's 2nd 
observation versus 'X' coordinate machine in funduscopies together with 

altered ones 

 
 

Figure 35. Correlation between the ophthalmologist's 2nd observation 
versus 'Y' coordinate machine in funduscopies together with altered 

ones. R=0.96 

 
Figure 36. Degree of agreement between the ophthalmologist's 2nd 

observation versus 'Y' coordinate machine in funduscopies together with 
altered ones 
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DISCUSSION 
 
This study aimed to compare the performance of observations and 
markings of the optic disc center between an ophthalmologist and by 
computer vision through Bland-Altman analysis. Degrees of 
agreement were generated where it was possible to calculate the 
average difference in the size of the error between one observation 
and another. From this, it was seen that the 1st and 2nd observation of 
the same ophthalmologist had a strong degree of agreement in all 
coordinates, analyzing both normal, altered and normal funduscopy 
together with altered. The largest mean difference was about 8 units 
above 0, but all results are within the confidence interval. Similar to 
this, Fu et al.(24) proposed the segmentation of the optic disc and the 
excavation of the optic disc manually by 7 ophthalmologists in 
normal funduscopy and in funduscopies with glaucoma, and in optic  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
disc segmentation there was little statistical difference (AUC between 
0.89 and 0.85), while in the segmentation of the optic disc excavation 
there was a large statistical variation among ophthalmologists (AUC 
between 0.47 and 0.85). In the comparison of the two 
ophthalmologist's markings in relation to the machine's marking, it 
was seen that the average differences significantly increased all 
funduscopies groups both in the X coordinate and in the Y coordinate. 
mean differences reached 100 units above 0. It was noticed that the 
variation of what the machine detected as the center of the optic disc 
was greater when altered funduscopy and Y coordinate were 
involved, probably due to the difficulties of detection in images with 
low luminosity, blurring, low contrast and the pathologies 
themselves. Alshayeji et al.²⁵ in detecting the optic disc by the  
machine also found difficulties in some funduscopies and some 

 

 
 

Figure 37. Mean difference units between coordinates, funduscopy groups and observers 
 

 

 
 

Figure 38. Retinography of the right eye that was not marked by the 
algorithm 

 

 
 

Figure 39. Retinography of the right eye that was not marked by the 
algorithm 

 

 
 

Figure 40. Retinography of the left eye in which the marking by the 
algorithm was outside the limits of the optic disc 

 

 
 

Figure 41. Retinography of the left eye in which the marking by the 
algorithm was outside the limits of the optic disc. 
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images were no longer marked, especially in funduscopies with poor 
optic disc contrast, with a lot of variation in backlighting, color 
similarity and contrast of the optic disc with the exudates of diabetic 
retinopathy. The location of the optic disc was also difficult in 
funduscopies with more pathologies. The identification and 
segmentation studies of structures are important, as they are the first 
step towards being able to use artificial intelligence in diseases that 
have specific biomarkers and lesions²⁶, as in the case of glaucoma. 
Automatic segmentation can also facilitate and optimize the 
conventional work of structural identification of the optic nerve²⁷, 
since manually it is very time-consuming²⁸. For this reason, this work 
aims to analyze the performance of detecting the center of the optic 
disc by the machine, in order to arrive at the identification of 
glaucomatous optic nerves with this technology. Li et al.²⁹ studied the 
effectiveness of detecting optic disc neuropathy in glaucoma using 
normal and glaucoma funduscopy using deep learning technology 
with an n=48116, and showed a robust result, with AUC=0.986, 
sensitivity of 95, 6% and specificity of 92% in the detection of 
funduscopies referred to with glaucomatous optic disc neuropathy by 
the 21 specialists. During the choice of funduscopies, those with poor 
quality were excluded from the study.  
 
The main reason for the appearance of false negatives (n=87) was the 
coexistence of other factors in the images, including pathological or 
high myopia. Likewise, Christopher et al.³⁰ had a high accuracy 
(AUC=0.91) in the identification of glaucomatous optic nerve 
(previously classified by a specialist., and even had a better 
performance in funduscopies with moderate to severe glaucoma 
(AUC=0.97) However, the inadequate quality of the retinography 
with blurring or low contrast can cause the model to generate errors 
and have low confidence results (AUC<0.5). In this study, only in 2 
images the algorithm used could not identify and generate markings, 
which generated a good perspective for the model. The retinographies 
are represented in Figure 38 and Figure 39. In both images we can see 
the presence of blurring and a lower contrast, giving a homogeneous 
light intensity for the funduscopies. Although only 2 images were not 
identified by this model, some coordinates identified by the machine 
could not be inside the optic disc, as shown in Figure 40 that the optic 
disc is not represented as the brightest area of the image and in Figure 
41 in that the marking of the coordinates was made at the second 
brightest point of the retinography. Liu et al.³¹ also proposed the use 
of deep learning to identify glaucomatous optic nerves in different 
populations. The funduscopies used underwent quality control, which 
tried to reduce the images with significant artifacts, low resolution 
and inadequate lighting. In the local population (Chinese Glaucoma 
Study Alliance) the AUC reached 0.996, with a specificity of 97.7% 
and a sensitivity of 96.2%. In the other populations, there was an 
AUC greater than 0.964, specificity and sensitivity greater than 
80.8% and 87.7%, respectively. When the model was used in 
different quality images obtained from the internet, the result was: 
AUC=0.823, Specificity of 70.4% and Sensitivity of 82.2%. 
 

CONCLUSION 
 
The study of the comparison of optic disc detection in funduscopies 
between a specialist and an AI algorithm allows us to conclude that 
the model used is promising. Some analyzes can be performed with 
the degrees of agreement generated by the Bland-Altman plots. When 
intra-specialist comparison was performed, the mean disagreement in 
all funduscopy and coordinate groups were similar and close to 0. 
Comparing the two observations of the ophthalmologist versus the 
machine, the disagreement between the two became evident as the 
mean differences increased. However, in some funduscopy groups, 
the detections of the optic disc center by the machine did not have 
unit discrepancies as strong as others. In funduscopies without 
pathologies, the detection of the machine tended to be closer to the 
markings made by the specialist in the two observations. The group of 
altered and normal funduscopies together with altered ones were 
where the disagreements were more accentuated. In addition, when 
the Y coordinate was involved, the discordances reached the highest 
unit values, reaching more than 100 units above 0. Therefore, there is 

a relationship regarding the coexistence of several factors present in 
the image, including pathological ones, in the performance of the 
model used. One of the factors that contributed to the increase in the 
mean difference was the luminosity of the retinographies, which is 
widely described in the literature. The algorithm used by the machine 
is also based on the illumination that the optic disc transmits, which 
can be confused with other light sources produced by certain 
pathological changes or impaired by inadequate image 
contrast.Despite a certain degree of disagreement between the 
specialist and the machine, the algorithm used in this study showed 
that it has great potential for detecting the center of the optic disc. The 
discussion around the various possibilities of investigation is 
necessary to increase the capacity of the model and make the 
difference between computer vision increasingly closer to an expert. 
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