Full Length Research Article

DESIGN OF SINGLE-INPUT FUZZY LOGIC CONTROL OF FLYBACK MULTI-OUTPUT QUASI RESONANT CONVERTER

*Anitha, T. and Arulselvi, S.

Department of E \& I, Annamalai University, Annamalai Nagar, India

ARTICLE INFO

Article History:

Received $08^{\text {th }}$ January, 2014
Received in revised form
$11^{\text {th }}$ February, 2014
Accepted $15^{\text {th }}$ February, 2014
Published online $14^{\text {th }}$ March, 2014

Key words:

Dc-dc converters,
Flyback converter,
Fuzzy logic control,
Single input fuzzy logic control.

Abstract

Power supply voltages in digital systems have been reduced considerably in recent years and often digital components requiring different voltages are present in the same board. This has increased the demand for multiple output power distribution systems with tight load regulation. In this paper, a detailed analysis and design of a multi-output fly back zero voltage switching (ZVS) quasi resonant converter (QRC) has been carried out. In order to improve the performances of the converter due to nonlinearity, intelligent controller like conventional fuzzy logic controller and single input fuzzy logic controller are proposed and simulated. The output results for load regulations are presented and the performances of both the controllers are compared. The result reveals that single input fuzzy logic controller gives satisfactory performances.

Copyright © 2014 Anitha, T. and Arulselvi, S. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Multi-output PWM dc-dc converters are widely used in communications, aerospace and computer systems, as they are usually more compact and less expensive than a collection of single-output converters. Fig. 1 shows the schematic of single power converter with multiple outputs, e.g. flyback converter with multiple secondary windings, and regulates one output. This leads to poor load regulation in the others outputs. In some cases each output is regulated by feedback control and others tracks as best they can. This scheme is known as cross regulation. In aerospace applications the allowable size and weight are highly restricted to accommodate greater payload. In the effort to increase the power density of power supplies, the switching frequency is pushed to high values which, in PWM converter realizations, normally lead to considerable power loss. Another significant drawback of the switch-mode operation is the EMI produced due to large di/dt and dv/dt. To overcome these short comings, new families of QRCs are introduced (Baha, 1999; Issa Batarseh, 2004; Dananjayan et al., 1998). The design and control of multi-output forward FM-ZCS-QRC is presented (Baha, 1999). The detailed analysis and technique of determining the cross regulation characteristics of a two-output half-bridge clamped series

[^0]resonant converter (SRC) operating in the discontinuous conduction mode below resonance are reported (Jai P. Agarwal, 2000). This topology requires a wide range of frequency band in order to regulate disturbances the output voltage against load variations and supply disturbances. To eliminate this constant frequency (CF)-ZVS-QRC is proposed (Arulselvi et al., 2005). It has two switches, the presence of the auxiliary switch provide inductor freewheeling thereby reducing the control range of frequencies when compared with the conventional FM-QRCs. The converter may thus be called a CF-ZVS-QRC. This paper presents the design and simulation of a closed loop control using conventional fuzzy logic controller and single input fuzzy logic controller for the multi-output flyback ZVS-QRC. All simulation works are carried out using MATLAB/SIMULINK software. The performances of two control techniques are compared.

Analysis of Multi-Ouput Flyback ZVS-QRC

The circuit diagram of multi-output flyback ZVS-QRC is shown in the Fig. 2. The switch S_{1} is the main switch. The elements L_{r} and C_{r} form the resonant tank circuit. By adding an auxiliary switch S_{2} in parallel with the resonant inductor L_{r}, the switching frequency band required to regulate the output voltage for a given load change is reduced. The auxiliary switch S_{2} is used to control the off time of the switching period. Here, the converter is operated in half-wave mode. The
elements L_{m}, L_{1} and L_{2} represent the primary, secondary1 and secondary 2 inductances, respectively. The current through the primary of the transformer is assumed as magnetizing current $\mathrm{I}_{\mathrm{m},}$ which is equal to $i_{L r}$. The following parameters are defined (Issa Batarseh, 2004; Arulselvi et al., 2005) for the analysis: Characteristics impedance $=\mathrm{Z}_{0}$, resonant angular frequency $=\omega_{0}$, resonant frequency $=\mathrm{f}_{0}$, resonant capacitor voltage $=V_{c r}$.

Fig. 1. Multiple outputs using single power converter

Fig. 2. Circuit diagram of multi-output flyback ZVS-QRC

Fig. 3. Equivalent circuit diagram for the converter after transferring the elements from secondary to primary

Fig. 4. Final equivalent circuit of the multi-output flyback ZVSQRC
$\begin{array}{ll}\text { Normalized Load Resistance } & R=\frac{R_{O}^{\prime}}{Z_{O}} \\ \text { Voltage conversion ratio } \mathrm{M}_{1} & =\mathrm{V}_{\mathrm{o} 1} / \mathrm{V}_{\mathrm{s}} \\ \text { Voltage conversion ratio } \mathrm{M}_{2} & =\mathrm{V}_{\mathrm{o} 2} / \mathrm{V}_{\mathrm{s}}\end{array}$
To simplify the analysis, the equivalent circuit diagram for the converter by transferring the elements from secondary to primary is shown in Fig. 3.Further modifications of Fig. 3 is shown in Fig. 4. Referring to Fig. 2 and Fig. 4, $V_{0}^{\prime}=V_{o i}^{\prime}$ and $V_{0 i}=V_{o i}^{\prime}$, where $\mathrm{i}=1,2$. Whenever a switching device changes from one state to another, the circuit configuration changes. Each configuration is referred to as a stage. In this QRC, six different stages are identified for each switching cycle and they are discussed as follows:

Linear capacitor charging stage (t_{o}, t_{l})

The switch S_{1} is opened to begin a new cycle at $t=t_{0}$. During this stage, the primary current I_{m} flows through the resonant capacitor C_{r} and its voltage increases linearly from zero to $\left(V_{s}+V_{o}^{\prime}\right)$. The capacitor voltage $V_{c r}$ is governed by the equation

$$
\begin{equation*}
V_{c r}(t)=\frac{I_{m} t}{C_{r}} \tag{1}
\end{equation*}
$$

When capacitor voltage $V_{c r}(t)$ reaches $\left(V_{s}+V_{o}^{\prime}\right)$ at $\mathfrak{t}=\mathrm{t}_{1}$, the diode D_{m} gets forward biased. The duration of this stage is given by
$T_{d 1}=t_{1}-t_{2}=\frac{C_{r}\left(V_{S}+V_{o}^{\prime}\right)}{I_{m}}$

Resonant inductor discharging stage (t_{1}, t_{2})

Stage 2 begins when the diode D_{m} conducts. The elements L_{r} and C_{r} form a series resonant circuit. The state equations are
$\frac{d V_{c r}}{d t}=\frac{i_{L r}(t)}{\mathrm{C}_{\mathrm{r}}}$
$\frac{d i_{L r}}{d t}=\frac{\left(V_{s}+V_{o}^{\prime}\right)-V_{c r}(t)}{L_{r}}$

With initial conditions $V_{c r}(0)=\left(V_{S}+V_{o}^{\prime}\right)$ and $i_{L r}(0)=I_{m}$. The solutions for the above equations are

$$
\begin{align*}
& V_{c r}(t)=\left(V_{S}+V_{o}^{\prime}\right)+I_{m} Z_{o} \sin \left(\omega_{o} t\right) \\
& i_{L r}(t)=I_{m} \cos \left(\omega_{o} t\right) \\
& V_{L r}(t)=-I_{m} Z_{o} \sin \left(\omega_{o} t\right) \tag{4}
\end{align*}
$$

At $\mathrm{t}_{1}, i_{L r}(t)$ reaches zero and $V_{c r}(t)$ reaches its peak value (refer Fig. 5) as

$$
\begin{equation*}
V_{c r}(t)=V_{\text {cpeak }}=\left(V_{S}+V_{o}^{\prime}\right)+I_{m} Z_{o} \tag{5}
\end{equation*}
$$

When $V_{L r}(t)$ reaches zero at $\mathrm{t}=\mathrm{t}_{2}$, the switch S_{2} is turned ON to reduce losses as shown in Fig. 5. The duration of this stage is $T_{d 2}$ which is equal to $\mathrm{t}_{2}-\mathrm{t}_{1}$.
$T_{d 2}=t_{2}-t_{1}=\frac{\pi}{\omega_{o}}$
At $\mathrm{t}=\mathrm{t}_{2}$, the voltage across C_{r} then becomes $\left(V_{S}+V_{o}^{\prime}\right)$

Holding stage $\left(t_{2}, t_{3}\right)$

This is the new stage, which characterizes the multi-output flyback ZVS-QRC. The constant switching frequency operation is achieved by introducing the holding stage, during which $i_{L r}$ and $V_{c r}$ are held constant. The voltage $V_{L r}$ is clamped at zero value by keeping the switch S_{2} closed. Then for this stage, voltage and current equations are given by
$V_{c r}(t)=\left(V_{S}+V_{o}^{\prime}\right)$
$i_{L r}(t)=I_{m}$
This stage continues until S_{2} is turned OFF at $t=t_{3}$. The duration of this stage is $T_{d 3}$ which is equal to $t_{3}-t_{2}$. The conversion ratio M_{1} and M_{2} can also be varied by varying $T_{d 3}$.

Resonant inductor charging stage $\left(t_{3}, t_{4}\right)$

Resonance of L_{r} and C_{r} resumes when S_{2} is turned OFF at $t=t_{3}$ and the corresponding equations are
$\frac{d i_{L r}}{d t}=\frac{\left(V_{S}+V_{o}^{\prime}\right)-V_{c r}(t)}{L_{r}}$
$\frac{d V_{c r}}{d t}=\frac{i_{L r}(t)}{C_{r}}$

With initial conditions $V_{c r}(0)=\left(V_{S}+V_{o}^{\prime}\right)$ and $i_{L r}(0)=-I_{m}$. The solutions for the above equations are
$i_{L r}(t)=I_{m} \cos \left(\omega_{o} t\right)$
$V_{c r}(t)=\left(V_{S}+V_{o}^{\prime}\right)-I_{m} Z_{o} \sin \left(\omega_{o} t\right)$

This stage terminates when $V_{c r}(t)$ becomes zero. The duration of this stage is Td_{4} which is equal to $\mathrm{t}_{4}-\mathrm{t}_{3}$.
$T_{d 4}=\frac{1}{\omega_{o}} \arcsin \left(\frac{V_{S}+V_{o}^{\prime}}{I_{m} Z_{o}}\right)$
$T_{d 4}=\frac{(\alpha-\pi)}{\omega_{o}}$
$\alpha=\pi+\arcsin \left(\frac{V_{S}+V_{o}^{\prime}}{I_{m} Z_{o}}\right)$
where α lies in the range $\pi<\alpha<3 \pi / 2$. Then the inductor current $i_{L r}$ is given by the equation
$i_{L r}\left(t_{4}\right)=I_{m} \cos (\alpha)$.

Linear inductor charging stage (t_{4}, t_{5})

The switch S_{1} is turned ON at $\mathrm{t}=\mathrm{t}_{4}$ as shown in Fig. 5, when $V_{c r}$ becomes zero to reduce turn-on loss. The current $i_{L r}$ increases linearly and reaches I_{m} at $t=t_{5}$. Beyond t_{4}, the capacitor voltage is clamped to zero by the diode D as shown in Fig. 4. The corresponding state equation is
$\frac{d i_{L r}}{d t}=\frac{V_{S}+V_{o}^{\prime}}{L_{r}}$
With initial condition, $i_{L r}(t)$ is given by
$i_{L r}=\left(\frac{V_{S}+V_{o}^{\prime}}{I_{m} Z_{o}}\right)+I_{m} \cos (\alpha)$
This stage terminates when inductor current becomes I_{m}. The duration of this stage is given by

$$
\begin{equation*}
T_{d 5}=\left(\frac{I_{m} Z_{o}(1-\cos (\alpha))}{\left(V_{S}+V_{o}^{\prime}\right) \omega_{o}}\right) \tag{13}
\end{equation*}
$$

Constant current stage ($\boldsymbol{t}_{5}, t_{6}$)

Once the inductor current $i_{L r}(t)$ reaches I_{m} at t_{5}, the diode D_{m} turns OFF. The switch S_{1} conducts as long as it is kept ON. At t_{6}, the switch S_{1} is turned OFF which starts the new cycle. The duration of this stage is $T_{d 6}$ which is equal to $t_{6}-t_{5}$. The theoretical waveforms of the multi-output flyback ZVS-QRC are shown in Fig. 5.

Open Loop Simulation

Design Procedure

The design parameter of a multi-output fly back ZVS-QRC (Arulselvi et al., 2005; Arulselvi, 2007), tabulated in Table I are used for analysis and simulation studies. Selecting normalized frequency, $\mathrm{f}_{\text {ns }}$ as 0.15 and the switching frequency $f_{\text {s }}$ as 25 kHz , the resonant frequency is calculated as $f_{o}=$ $\mathrm{f}_{\mathrm{s}} / 0.15=165 \mathrm{kHz}$. The condition for zero voltage switching is

Fig. 5. Theoretical waveforms of multi-output flyback ZVS-QRC

Table 1. Design parameters

$\begin{array}{r} \mathrm{V}_{\mathrm{s}} \\ (\mathrm{~V}) \\ \hline \end{array}$	V_{01} (V)	$\begin{aligned} & \mathrm{V}_{02} \\ & (\mathrm{~V}) \end{aligned}$	I_{01} (A)	$\begin{gathered} \mathrm{I}_{02} \\ (\mathrm{~A}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{r}} \\ \mu \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{r}} \\ \mu \mathrm{~F} \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{s}} \\ \mathrm{kHz} \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{o}} \\ \mathrm{kHz} \end{gathered}$
12	5	12	1	0.5	28.2	0.0333	25	165

$I_{m} Z_{o}>\left(V_{S}+V_{o}^{\prime}\right)$

Maximum magnetizing current I_{m} at nominal load
$\mathrm{I}_{\mathrm{m}}=(\mathrm{M}+1) \mathrm{I}_{\mathrm{o}}=2.1 \mathrm{~A}$

Where, $\mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o} 1} \mathrm{n}_{1}+\mathrm{I}_{\mathrm{o} 2} \mathrm{n}_{2}$ and $M=V_{S} / V_{o}^{\prime}$.

Therefore to satisfy $(14), Z_{0}>12 \Omega$, using Z_{o} and f_{0} values, the resonant components L_{r} and C_{r} are calculated as $28.2 \mu \mathrm{H}$ and $0.0333 \mu \mathrm{~F}$, respectively.

Open loop simulation results

The open loop simulation of multi-output fly back ZVS-QRC is carried out using MATLAB/SIMULINK software. The simulated resonant capacitor voltage $\left(\mathrm{V}_{\mathrm{cr}}\right)$, resonant inductor current $\left(\mathrm{i}_{\mathrm{Lr}}\right)$ and gate pulses applied to $\mathrm{S}_{1}\left(\mathrm{~V}_{\mathrm{g} 1}\right)$ and $\mathrm{S}_{2}\left(\mathrm{~V}_{\mathrm{g} 2}\right)$ for the nominal load conditions of secondary are shown in Fig. 6. It is seen that these waveforms agree closely with the theoretical waveforms as shown in Fig. 5. It is observed from Fig. 7and 8 that in open loop operation, the converter output deviates from the required output voltage 5 V and 12 V and settles at a new value after a sudden load current changes at time $t=9 \mathrm{msec}$ from 1 A to 1.42 A . Hence a closed loop control is needed to regulate the output voltages against load variation.

Closed Loop Simulation

The block diagram of closed - loop control is shown in Fig.9. To regulate the output voltage V_{ol}, the switching frequency of the PWM pulses are varied depends on error. Since output V_{01} is very sensitive to load variation by producing large deviations from nominal value for small variations in load. Hence a closed-loop control is designed to maintain tight regulation of V_{01} against load variation and V_{02} is crossregulated.

Fig. 6. Simulated waveforms showing the gate pulse of the switches, resonant inductor current, and resonant capacitor voltage

Fig. 7. Output voltage $\left(V_{01}\right)$ and current $\left(I_{01}\right)$ of secondary 1 for sudden load current $\left(I_{01}\right)$ variation of 1 A to 1.4 A

Closed-loop control using conventional fuzzy logic control (CFLC)

The inputs to the CFLC are the error voltage (e) and change in error (ce). The output is the change in switching frequency (Δu). Depending on the magnitude and sign of e and ce, the switching frequency of the main switch S_{1} and auxiliary switch S_{2} is varied to regulate the output voltage. For ease of computation, the variables e, ce and Δu are divided into five fuzzy subsets using triangular membership function as shown in Fig.10. Regulated output voltages $\mathrm{V}_{\mathrm{o} 1}$ and $\mathrm{I}_{\mathrm{o} 1}$ for sudden increase in load current $\left(\mathrm{I}_{01}\right)$ at time $\mathrm{t}=9 \mathrm{msec}$ from 1 A to 0.7 A are shown in Fig.11. The performances of FLC are given in Table 4.

Fig. 8. Output voltages V_{02} and I_{02} of secondary 2 for sudden load current $\left(\mathrm{I}_{01}\right)$ variation of 1 A to 1.4 A

Fig. 9. Block diagram of closed loop control of multi-output ZVS flyback QRC

Closed-loop control using SFLC

The SFLC is designed for CFLCs with skew symmetric property similar to Table 2, most rule tables used in power converters applications have skew property, i.e. the output membership values along the leading diagonal of the rule table are zero-valued and those on either side of this diagonal take opposite signs $\Delta u i j=-\Delta u j i$ where $\Delta u i j$ is the output membership function along the i th the row and j th column. Also, the magnitude of the control signal is approximately equal to the distance from the main diagonal line or switching line ($d s$) of the rule table as shown in Fig. 12. For a general second order system, the switching line is given in eqn (15). For the present case, switching line has unity slope passing through origin and it is defined as given in eqn (16). This property is utilized to suggest a new variable called signed distance ($d s$), which is declared as the shortest distance between switching line and the present operating point. From any operating point, the control variable is directly related to the signed distance ($d s$), which is the input variable to the SFLC. The output of SFLC is considered as change of switching frequency (Δu). As a result, the number of fuzzy rules required becomes minimum and the firing rule table is reduced to one-dimensional space compared to CFLC.

The equation for switching line is
$c e+\lambda e=0$
For $\lambda=1, \quad c e+e=0$
The intersection point $H(e, c e)$ of the switching line from an operating point $P(e 1, c e 1)$ is illustrated in Fig. 9. The distance $d s$ between $H(e, c e)$ and $P(e 1, c e 1)$ for a general point $P(e, c e)$ is expressed as given in eqn (21) for a second-order system and is deduced to eqn (22) for the present case.
$\mathrm{ds}=\operatorname{sgn}(\mathrm{y}) *((|\mathrm{ce}+\lambda \mathrm{e}|) / 1+\lambda 2)$
$d s=\operatorname{sgn}(y) *((|c e+e|) / 2)$
$\operatorname{sgn}(y)=f(x)=\left\{\begin{aligned} 1, & y>0 \\ -1, & y<0\end{aligned}\right.$
and
$y=c e+e$
The sign of the control signal (Δu) for ZVS-QRC, is positive for $y>0$ and negative for $y<0$ and its absolute magnitude is proportional to the distance from the switching line. Triangular membership functions with the five linguistic values are designed for $d s$ and Δu. The range of $d s$ and Δu are also normalized to $[-11]$ and the membership diagram is shown in Fig. 14. The fuzzy rule for SFLC is constructed between the signed distance $d s$ and the control variable Δu as shown in Table 3. The inference mechanism, defuzzification and denormalization are carried out in a manner similar to CFLC.

Table 2. Fuzzy Rule Base

ce	NB	NS	Z	PS	PB
NB	NB	NB	NS	NS	Z
NS	NB	NS	NS	Z	PS
Z	NS	Z	Z	PS	PB
PS	NS	Z	PS	PB	PB
PB	Z	PS	PB	PB	PB

Fig. 10. Membership function diagram of $\mathrm{c}, \mathrm{ce}, \Delta \mathrm{u}$

Fig. 11. Regulated output voltage $\left(V_{01}\right)$ and current $\left(I_{01}\right)$ of secondary1 for sudden load current $\left(I_{01}\right)$ variation of 1 A to 0.7 A with FLC

Fig.12. Simplified plot of CFLC rule table

Fig. 13. Plot showing calculation of signed distance (d_{s}) for ZVSQRC

Fig. 14. Membership function diagram of d_{s} and Δu.

Table 3. Control rules for SFLC

d_{s}	PB	PS	Z	NS	NB
Δu	PB	PS	Z	NS	NB

This method can be extended to CFLC design based on n inputs. In this case, the rule table is established on n dimensional space of $e 1, e 2 \ldots e n$. The number of rules for m fuzzy sets becomes $m n$, which makes it very difficult to generate reasonable control rules. Similar to two-dimensional rule table, n-dimensional table also satisfies the skewsymmetric and the absolute magnitude of the control input is proportional to the distance from its main diagonal of hyper plane. The switching hyper plane is
$e^{(n-1)}+\gamma_{n-1} e^{(n-2)}+\ldots+\gamma_{2} \dot{e}+\gamma_{1} e=0$
Then signed distance d_{s} from the operating point to the switching hyper plane of eqn (25) can be calculated as
$d_{s}=\frac{e^{(n-1)}+\gamma_{n-1} e^{(n-2)}+\ldots+\gamma_{2} \dot{e}+\gamma_{1} e}{\sqrt{1+\gamma_{n-1}^{2}+\cdots+\gamma_{2}^{2}+\gamma_{1}^{2}}}$
Then the rule table is established equivalent to Table 2. This makes SFLC very simple.

Table 4. Performance Measures

	Fuzzy logic controller	Single input Fuzzy logic controller		
ISE	Up load	Down load	Up load	Down load
$\mathrm{T}_{\mathrm{r}}(\mathrm{sec})$	0.04546	0.04473	0.04429	0.04415
$\mathrm{Offset}^{(V)}$	0.0063	0.0058	0.0072	0.006
$\mathrm{~T}_{\mathrm{s}}(\mathrm{msec})$	0.17	0.076	0.14	0.056

Fig. 15. Regulated output voltage $\left(\mathrm{V}_{01}\right)$ and current $\left(\mathrm{I}_{01}\right)$ of secondary1 for sudden load current (I_{01}) variation of 1 A to 0.7 A with SFLC

Fig. 16. Regulated output voltage $\left(\mathrm{V}_{02}\right)$ and current $\left(\mathrm{I}_{02}\right)$ of secondary 2 for sudden load current $\left(I_{01}\right)$ variation of 1 A to 0.7 A with SFLC

Conclusion

The performances of the multi output flyback converter with conventional PI controller and fuzzy logic controller are compared. The ISE value, rise time $\left(\mathrm{T}_{\mathrm{r}}\right)$, settling time $\left(\mathrm{T}_{\mathrm{s}}\right)$ and offset for sudden load current increase from 1 A to 1.42 A and sudden load current decrease from 1 A to 0.7 A are tabulated in Table IV. It can be concluded that Single input fuzzy logic controller is a better choice than conventional Fuzzy logic controller in terms of less ISE and offset.

REFERENCES

Baha, B. "Analysis and control of a cross-regulated multioutput forward quasi-resonant converter," IEEE Proc.Circuits Devices Syst., vol. 146, no. 5, pp. 255-262,October 1999.

Issa Batarseh, Power Electronic Circuits, John Wiley and Sons, 2004.
Dananjayan, P., V. Sriram, C. Chellamithu. "A flyback constant frequency ZCS-ZVS quasi-resonant converter," Elsevier Microelectronics journal, vol 29, pp.495504,1998.
Jai P. Agarwal, "Determination of cross regulation in multioutput resonant converters," IEEE Transl. on Aerospace and electronic system., vol. 36, no. 3,pp. 760-772,July 2000.

Arulselvi, S., K. Deepa, G. Uma. "Design, analysis and control of a new multi-output flyback CF-ZVS-QRC," in Proc. IEEE/ICIT Conf, Hongkong,pp.413-419,December-2005.
Arulselvi, S. "Conventional and intelligent control of hardswitched and soft-switched dc-dc converters," Ph.D. dissertation, Anna Univ., Chennai,India,2007.
Balu Balakrishnan, Data Book and Design Guide. Power Integrations, U.S.A,2005.
George Stephanopoulos, Chemical Process Control,Prentice Hall of India, 1994.

[^0]: *Corresponding author: Anitha, T.
 Department of E \& I, Annamalai University, Annamalai Nagar, India

