

ISSN: 2230-9926

Available online at http://www.journalijdr.com

International Journal of Development Research Vol. 4, Issue, 1, pp. 153-156, January, 2014

Full Length Research Article

GENETIC VARIATION OF 15 AUTOSOMAL SHORT TANDEM REPEAT (STR) LOCI IN SAMPLE OF PALESTINIAN POPULATION RESIDING IN IRAQ

^aMohammed Mahdi AL-Zubaidi, ^{*,b}Mohammed Abdul-Daim Saleh and ^aSalwa Jaber Alawedi

^aForensic DNA Center Research & Training, AL- Nahrain University, Iraq ^bDepartment of Biology, College of Science, Diyala University, Iraq

ARTICLE INFO

Article History: Received 13th October, 2013 Received in revised form 22nd November, 2013 Accepted 01st December, 2013 Published online 25th January, 2014

Key words: Autosomal STR; Palestinian population; Forensic DNA Extraction Kit

ABSTRACT

Allele frequencies for the 15 autosomal STR loci included in the AmpFISTR1 Identifiler TM PCR Amplification Kit panel from Applied Biosystems (D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, TH01, TPOX, CSF1PO, D19S433, D2S1338, D16S539) and several statistical parameters were estimated from a sample of 106 unrelated individuals. samples were extracted using a Prep Filer Forensic DNA Extraction Kit (Applied Biosystems, Foster City, CA), DNA quantified using Nano drop Thomson. a different number of alleles were observed with frequencies ranging between 0.005 (D8S1197- allele 9, D21S11- allele 26 and 33, D13S317- allele 15, vWA – allele 11and 20, D18S51 - allele 20and FGA- allele 28) and 0.443 (TPOX-allele 8). No significant departure from Hardy Weinberg Equilibrium (HWE) expectations were observed (a 5% significance level was taken) in the Palestinian Population residing in Iraq. The combined probability of exclusion, power of discrimination, probability of matching value for all the 15 STR loci were 0.99989468; 0.999999 and 1.0597E-18, respectively.

Copyright © 2013 Mohammed Abdul-Daim Saleh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Introducing of a set of Short Tandem Repeat (STR) loci as the markers induced a significant progress in this field of science (Gill et al., 1995; Thomson et al., 1999, Alonso et al., 2001). STR loci show variability among individuals in population and that makes these sequences important in genetic mapping, linkage analysis, identity testing in forensic cases, paternity testing, missing persons investigations, and mass disaster victim identification. In order to determine the probability of a particular genotype, population data must be gathered with a proper sample size to make an estimate of the frequency of each possible allele and genotype. The literature on STR allele frequencies contains over 1000 papers from various countries and population groups (Chakraborty, 1992). Therefore, importance of understanding the used marker heterogeneity within different populations is constantly emphasized (Thomson et al., 1999, Alonso et al., 2001; Chakraborty, 1992; Cohen, 1990). Commercial STR assays that can coamplify as many as 16 different loci (Barni et al., 2007; Krenke et al., 2002) have become widely used in forensic DNA typing. Different number and different sets of STR loci

*Corresponding author: Mohammed Abdul-Daim Saleh Department of Biology, College of Science, Diyala University, Iraq in a different number of the individuals of southern origin were used in previous studies of Palestinian Population residing in Iraq. Namely, 15 STR loci have already been employed in a study of population of Iraq (Applied Biosystems, 2001). The aim of this work was to establish a database of the Palestinian Population residing in Iraq for forensic purposes including paternity testing. Therefore we have applied the recently introduced AmpF_STR® IdentifilerTM kit that amplifies the 15 STR loci as well the amelogenin locus for gender identification. In this study we present the allele frequencies and forensic efficiency values for the 16 loci in a sample of 106 unrelated Palestinian Population residing in Iraq.

International Journal of

DEVELOPMENT RESEARCH

MATERIALS AND METHODS

Population: Buccal swap were collected by oral stick (Sterile Omni Swab or Sterile Foam Tipped Swabs, Whatman International Ltd., Maidstone, UK) from 106 healthy, randomly chosen from Palestinian Population residing in Iraq, samples contain both genders (male & female).

DNA extraction: samples were extracted using a Prep Filer Forensic DNA Extraction Kit (Applied Biosystems, Foster City, CA), DNA quantified using Nano drop Thomson

Allele	D13S317	TH01	D3S1358	CSF1PO	D7S820	D21S11	D8S1179
5							
6		0.208		0.01.41.500	0.040		
7	0.105	0.241		0.0141509	0.042		
8	0.127	0.193		0.009434	0.132		0.00 <i>5</i>
9	0.042	0.245		0.014	0.160		0.005
9.3	0.020	0.094		0.044	0.150		0.004
10	0.038	0.019		0.264	0.170		0.094
11	0.368			0.335	0.269		0.099
12	0.274			0.297	0.217		0.156
12.2	0.000			0.050	0.000		0.00
13	0.080			0.052	0.009		0.226
13.2	0.077		0.077	0.014			0.1(0
14	0.066		0.066	0.014			0.160
14.2	0.005		0.100				0.212
15	0.005		0.198				0.212
16			0.179				0.033
16.2			0.240				0.014
172			0.349				0.014
17.2			0.100				
18			0.189				
18.2			0.010				
19			0.019				
20							
25						0.005	
20						0.003	
27						0.019	
20						0.038	
30						0.222	
30 2						0.330	
30.2						0.071	
31.2						0.156	
31.2						0.150	
32 2						0.005	
32.2						0.127	
33.2						0.005	
34.2						0.015	
Hom	18 87%	20.75%	22 64%	25 47%	31 13%	16.04%	18 87%
Het	81 13%	79 25%	77 36%	74 53%	68 87%	83.96%	81 13%
N	212	212	212	212	212	212	212
14	212	212	212	£12	£12	£12	<u> </u>

Table 1. Allele frequencies at 15 STR loci in Palestinian Population residing in Iraq

						Table 1 (Continued)			
Allele	FGA	D5S818	D18S51	TPOX	vWA	D19S433	D2S1338	D16S539	
5									
6				0.014					
7									
8		0.009		0.443				0.042	
9		0.061	0.014	0.127				0.255	
9.3									
10		0.071		0.142				0.042	
11		0.354	0.014	0.274	0.005			0.292	
12		0.321	0.052			0.090		0.231	
12.2									
13		0.170	0.203			0.250		0.113	
13.2									
14		0.014	0.123		0.061	0.146		0.024	
14.2						0.066			
15			0.189		0.085	0.231			
15.2						0.108			
16			0.146		0.292	0.038	0.061		
16.2						0.047			
17			0.090		0.302	0.024	0.212		
17.2									
18	0.019		0.137		0.151		0.113		
18.2	0.009								
19	0.099		0.019		0.099		0.179		
20	0.137		0.005		0.005		0.132		

.....Continue

21	0.175		0.009				0.014	
21.2								
22	0.108						0.038	
22.2								
23	0.123						0.137	
23.2								
24	0.132						0.080	
24.2								
25	0.118						0.009	
26	0.024						0.024	
27	0.009							
28	0.005							
29	0.042							
Hom	17.92%	27.36%	16.04%	29.25%	29.25%	16.98%	20.75%	22.64%
Het	82.08%	72.64%	83.96%	70.75%	70.75%	83.02%	79.25%	77.36%
N	212	212	212	212	212	212	212	212

Hom: observed homozigosity; Het: expected heterozigosity; N: number of alleles.

Table 2. Tests performed	to determine the suitibilit	v of markers for t	forensic and	paternity studies

	ensic Statisti	ics		Paternity Statistics						
Locus	MP	PD	PIC	PE	PI	Ho	He	χ2	df	P-value
D8S1179	0.05	0.95	0.81	0.58	2.65	81.13%	83.37%	24.742	26	0.53364
D21S11	0.07	0.93	0.77	0.63	3.12	83.96%	79.41%	64.376	25	0.00003
D7S820	0.07	0.93	0.78	0.40	1.61	68.87%	80.67%	30.175	20	0.06706
CSF1PO	0.12	0.88	0.68	0.48	1.96	74.53%	72.64%	44.251	17	0.000314
D3S1358	0.09	0.91	0.73	0.52	2.21	77.36%	76.65%	26.936	15	0.029265
TH01	0.08	0.92	0.76	0.55	2.41	79.25%	79.22%	3.5598	17	0.999767
D13S317	0.09	0.91	0.73	0.58	2.65	81.13%	75.95%	24.032	20	0.241004
D16S539	0.08	0.92	0.74	0.52	2.21	77.36%	77.92%	19.381	19	0.432624
D2S1338	0.03	0.97	0.85	0.55	2.41	79.25%	86.14%	46.918	35	0.085873
D19S433	0.05	0.95	0.81	0.61	2.94	83.02%	83.43%	26.956	32	0.719873
vWA	0.08	0.92	0.75	0.43	1.71	70.75%	77.97%	30.935	19	0.04104
TPOX	0.14	0.86	0.64	0.43	1.71	70.75%	69.21%	19.781	11	0.048443
D18S51	0.04	0.96	0.84	0.63	3.12	83.96%	85.65%	162.91	34	< 0.00001
D5S818	0.11	0.89	0.69	0.45	1.83	72.64%	73.41%	11.754	17	0.814772
FGA	0.03	0.97	0.87	0.59	2.79	82.08%	87.99%	97.733	40	< 0.00001

MP: random match probability; PD: power of discrimination; PIC: polymorphic information content; PE: power of exclusion; PI: paternity index; Ho: observed heterozigosity; He: expected heterozigosity; χ_2 : Chi-square test for Hardy-Weinberg equilibrium;df: indicates degrees of freedom associated with the test P-value: probability value of Chi-square test for Hardy-Weinberg equilibrium.

Table 3. Forensic and Paternity statistical parameters of Palestinian Population residing in Iraq databases using 15 aSTR DNA markers

Sample size (n)	Palestinian Population residing in Iraq Database n=106				
Combined Matching Probability (CMP)	1.0597E-18				
Combined Discrimination Power (CDP)	0.999999				
Combined Exclusion Probability (CEP)	0.99989468				

Table 4. Results of locus-specific and global tests over loci for genetic differentiation between the Iraqi population examined and other populations

P-values from locus-specific contingency table analyses for each comparison										
Locus	Palestinian residing in Iraq	Turkey ^a	Palestinian ^b in Gaza	Saudi [°] Arabia	Arab ^d Emirate	Oman ^e	Iran ^f			
D8S1179	0.5336	0.0006	0.1412	0.3620	0.2138	0.2362	0.1314			
D21S11	0.00001	0.2705	0.1574	0.9092	0.0215	0.0730	0.5622			
D7S820	0.0671	0.1452	0.4238	0.2588	0.7204	0.5006	0.0280			
CSF1PO	0.0003	0.3428	0.4546	0.5310	0.7335	0.3152	0.3412			
D3S1358	0.0293	0.0087	0.0045	0.7102	0.0970	0.0217	0.0411			
TH01	0.9998	0.7788	0.0094	0.0531	0.0550	0.0261	0.6529			
D13S317	0.2410	0.0002	0.0190	0.0420	0.0077	0.0002	0.0010			
D16S539	0.4326	0.1446	0.7945	0.4446	0.8835	0.3881	0.0852			
D2S1338	0.0859	0.0344	0.0806	0.0182	0.0030	0.2033	0.0325			
D19S433	0.7199	0.0001	0.1733	0.1094	0.0052	0.0403	0.0256			
vWA	0.0410	0.0001	0.1941	0.8505	0.2186	0.4879	0.0063			
TPOX	0.0484	0.1332	0.0063	0.1195	0.2361	0.0067	0.6015			
D18S51	< 0.00001	0.5097	0.8647	0.1278	0.8735	0.7595	0.0972			
D5S818	0.8148	0.7158	0.4744	0.7014	0.3803	0.0988	0.4181			
FGA	< 0.00001	0.2694	0.2849	0.3000	0.3374	0.4425	0.5334			

^a Reference: [11].

^b Reference: [12].

c Reference: [13].

d Reference: [13].

e Reference: [13]

. f Reference: [14].

PCR amplification: Fifteen autosomal STR markers (the 13 CODIS core loci and D19S433 and D2S1338) were typed along with amelogenin using the Applied Biosystems AmpFiSTR® IdentifilerTM kit (3) 1 ± 2 ng of target DNA following the protocols described in the User's Manual (applyed Biosystems). The samples were amplifyed using verity PCR System (applyed Biosystems)

Typing: Amplification products were diluted 1:15 in Hi- DiTM formamide and GS500-LIZ internal size standard (Applied Biosystems) and analyzed on the 16-capillary ABI Prism® 3130XL Genetic Analyzer. POPTM-4 (Applied Biosystems) was utilized for higher resolution separations on a 36 cm array.

Data collection was performed with Data Collection v. 2.0 software (Applied Biosystems, Foster City, CA, USA) and samples were analyzed by GeneMapper1 v. 3.2 software (Applied Biosystems, Foster City, CA, USA).

RESULTS AND DISCUSSION

The observed allele frequencies for the 15 STR loci and results of forensic efficiency parameters for Palestinian Population residing in Iraq are shown in Tables 1, 2 and 3. A different number of alleles were observed with frequencies ranging between 0.005 (D8S1197- allele 9, D21S11- allele 26 and 33, D13S317- allele 15, vWA - allele 11and 20, D18S51 - allele 20and FGA- allele 28) and 0.443 (TPOX-allele 8). The highest heterozygosity is observed for D21S11 and D18S51 (83.96%) whereas the smallest heterozygosity value is obtained for D7S820 (68.87%). The loci were observed to have high discriminating power, as the power of discrimination of each loci varied from 0.86 (TPOX) to 0.97 (D2S1338 and FGA). All loci but D21S11 (0.00003), CSF1PO (0.000314), D18S51 (<0.00001) and FGA (<0.00001) met Hardy- Weinberg expectations (P > 0.05), whereas the PIC ranged from 0.64 (TPOX) to 0.87 (FGA). The combined power of discrimination for the 15 STR loci studied is 0.999999 in Table 3 which should be sufficient for the identification of any individual even for an extremely large population size. All 15 loci provide a combined probability of exclusion in nonpaternity of 99.9%. The Combined Exclusion Probability for the 15 STR loci studied is (0.99989468). There were fifteen within-locus tests conducted on the Palestinian Population residing in Iraq (Table 4). No significant departure from HWE expectations were observed (a 5% significance level was taken) in the Palestinian Population residing in Iraq. The exceptions were the D21S11 (P-value =0.00001), CSF1PO (Pvalue =0.0003), D18S51 (P- value =<0.00001) and FGA (Pvalue =<0.00001) loci but when the Bonferroni procedure was used as a correction for the multiple tests performed on a population sample The allele frequencies of Palestinian Population residing in Iraq .were compared with Turkey and also with the published data of the Palestinian in Gazan, Saudi Arabiae, Arabs Emirates, Oman and Iran (Table 4). The comparison between Palestinian Population residing in Iraq and Palestinian in Gazan revealed significant differences for D21S11, CSF1PO, D18S51 and FGA using the same p-value

(p-value 0.05). However, the comparison between Palestinian Population residing in Iraq and Iran, Oman and Arabs Emirates different loci D13S317, D19S433.

REFERENCES

- Abdin L., Shimada I., Brinkmann B., Hohoff C. 2003.
 Analysis of 15 short tandem repeats reveals significant differences between the Arabian populations from Morocco and Syria, Leg. Med. (Tokyo) 5 (Suppl. 1): S150–S155.
- Abu Halima S. 2009. Genetic Variation of 15 Autosomal STR Loci in the Palestinian Population. Master thesis.
- Alonso A, Anđelinović S, Martin P, Sutlović D, Erceg I, Huffine E, *et al* 2001. DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat Med J; 42:260-6.
- Alshamali F., Alkhayat A.Q., Budowle B., Watson N.D. 2005. STR population diversity in nine ethnic populations living in Dubai, Forensic Sci. Int. 152: 267–279.
- Applied Biosystems 2001. AmpFISTR Identifiler PCR Amplification Kit User's Manual, Foster City, CA, P/N 4323291.
- Barni F, Berti A, Pianese A, Boccellino A, Miller M. Caperna A, Lago G. 2007. Allele frequencies of 15 autosomal STR loci in the Iraq population with comparisons to other populations from the middle-eastern region Forensic Sci Int. 167: 87–92.
- Chakraborty R. 1992. Sample size requirements for addressing the population genetic issues of forensic use of DNA typing Hum Biol; 64: 141-159.
- Cohen JE. 1990. DNA fingerprinting for forensic identification: potential effects on data interpretation of subpopulation heterogeneity and band number variability. Am J Hum Genet; 46:358-68.
- Edwards A., Hammond H.A., Jin L., Caskey C.T. and Chakraborty R. 1992. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics; 12: 241–53.
- Foreman L.A and Evett I.V 2001. Statistical Analysis to Support Forensic Interpretation of a New Ten-Locus STR Profiling System. International Journal of Legal Medicine; 114:147-155.
- Gill P, Kimpton CP, Urquhart A, Oldroyd N, Millican ES, Watson SK, *et al.* 1995. Automated Short Tandem Repeat (STR) analysis in forensic casework a strategy for the future. Electrophoresis; 16:1543-52.
- Krenke, B. E., Tereba, A., Anderson, S. J., Buel, E., Culhane, S., Finis, C. J., *et al.* 2002. Validation of a 16-locus fluorescent multiplex system. *J. Forensic Sci.* 47, 773–785.
- Thomson JA, Pilotti V, Stevens P, Ayres KL, Debenham PG. 1999. Validation of short tandem repeat analysis for the investigation of cases of disputed paternity. Forensic Sci Int; 100:1-16.
- Yavuz A.T. Sarikaya. 2005. Turkish population data for 15 STR loci by multiplex PCR, J. Forensic Sci. 50: 737–738.