SOME PROPERTIES OF n X n GENERALIZED IDEMPOTENT MATRICES WITH ENTRIES 1 AND -1 SATISFYING $\mathbf{M}^{2}=\mathrm{m} \mathbf{M}(1 \leq \mathrm{m} \leq \mathrm{n})$

${ }^{* 1}$ Dr. Bakshi Om Prakash Sinha, ${ }^{2}$ Dr. Narendra Prasad and ${ }^{3}$ Dr. Rajesh Kumar Upadhaya
${ }^{1}$ Department of Physics, Ramgarh College, Ramgarh Cantt (Jharkhand)
${ }^{2}$ Department of Mathematics, Ramgarh College, Ramgarh Cantt (Jharkhand)
${ }^{3}$ Department of Zoology, Ramgarh College, Ramgarh Cantt (Jharkhand) India

ARTICLE INFO

Article History:

Received 27 ${ }^{\text {th }}$ August 2017
Received in revised form $19^{\text {th }}$ September, 2017
Accepted $18^{\text {th }}$ October, 2017
Published online $30^{\text {th }}$ November, 2017

Key Words:

Idempotent matrix,
Kronecker Product,
Eigen value of a matrix,
Eigen vector of a matrix.
*Corresponding author

Abstract

In this paper $\mathrm{n} \times \mathrm{n}$ generalized idempotent matrix M is defined with entries $1,-1$ satisfying $\mathrm{M}^{2}=$ $\mathrm{mM}(1 \leq \mathrm{m} \leq \mathrm{n})$ with examples. It is a quite new concept. We have discussed its properties that the Kronecker product of two generalized idempotent matrices is also a generalized idempotent matrix. Also if a $n \times n$ matrices M with entries 1 and -1 satisfies $M^{2}=m M(1 \leq m \leq n)$ then the column of matrix M are eigen vector corresponding to eigen values of M.

Copyright ©2017, Dr. Bakshi Om Prakash Sinha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Dr. Bakshi Om Prakash Sinha, Dr. Narendra Prasad and Dr. Rajesh Kumar Upadhaya. 2017. "Some properties of n x n generalized idempotent matrices with entries 1 and -1 satisfying $\mathrm{M}^{2}=\mathrm{m} \mathrm{M}(1 \leq \mathrm{m} \leq \mathrm{n})$ ", International Journal of Development Research, 7, (11), 17095-17102.

INTRODUCTION

Generalized Idempotent Matrix

An $n \mathrm{xn}$ matrix M will be called a generalized idempotent matrix if $\mathrm{M}^{2}=\mathrm{m} \mathrm{M}(1 \leq \mathrm{m} \leq \mathrm{n})$
Example : - 1) Let
$M=\left(\begin{array}{rrrr}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
be 4×4 matrix with entries 1 and -1 , then $M^{2}=4 \mathrm{M}$

Example : - 2) Let

be nxn matrix, then $\mathrm{M}^{2}=\mathrm{nM}$
Example : - 3) Let

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & -1 \\
-1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{llll}
-1 & & -1 \\
1 & & 1
\end{array}\right) \\
& M \\
& B
\end{aligned} \quad=\left(\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{array}\right)
$$

Then $M^{2}=2 \mathrm{M}$. Also if
$M=\left(\begin{array}{cc}A & -B \\ -B & A\end{array}\right) \quad$ then $M^{2}=2 M$
Kronecker Product (Tensor Product) of two matrices A and B is denoted by A x B and is defined as

Example : Let
$A=\left(\begin{array}{rrr}1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right) \quad$ and $B=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$

Then

Eigen value of a Matrix: A number λ is called the eigen value of an $n \times n$ matrix M, if $|M-\lambda I|=0$, Where I is the identity matrix of order n.

Eigen vector of a Matrix: A matrix X is called the eigen vector corresponding to eigen value λ of a $n x n \operatorname{matrix} M$ if $M X=\lambda X$
Theorem 1: If M_{1} and M_{2} are two (1, -1) generalized idempotent matrices, then $M_{1} x M_{2}$ is also a (1, -1) generalized idempotent matrix. Where X denotes the Kronecker product of matrix.

Proof: Since M_{1} and M_{2} are two $(1,-1)$ generalized idempotent matrices of order n_{1} and n_{2}
Therefore $\mathrm{M}_{1}^{2}=\mathrm{n}_{1} \mathrm{M}_{1}$
and $\mathrm{M}_{2}^{2}=\mathrm{n}_{2} \mathrm{M}_{2}$
Then we show that $M_{1} \times M_{2}$ is also a (1,-1) generalized matrix of order $n_{1} n_{2}$ ie $\left(M_{1} \times M_{2}\right)^{2}=n_{1} n_{2}\left(M_{1} \times M_{2}\right)$, ie $\quad M^{2}=n$ M
where
$\mathrm{M}=\mathrm{M}_{1} \times \mathrm{M}_{2}$
and
$\mathrm{n}=\mathrm{n}_{1} \mathrm{n}_{2}$
We consider $\mathrm{M}^{2}=\left(\mathrm{M}_{1} \times \mathrm{M}_{2}\right)^{2}=\left(\mathrm{M}_{1} \times \mathrm{M}_{2}\right)\left(\mathrm{M}_{1} \times \mathrm{M}_{2}\right)=\mathrm{M}^{2}{ }_{1} \times \mathrm{M}_{2}{ }_{2}$
$=\left(\mathrm{n}_{1} \mathrm{M}_{1}\right) \times\left(\mathrm{n}_{2} \mathrm{M}_{2}\right)=\mathrm{n}_{1} \mathrm{n}_{2}\left(\mathrm{M}_{1} \times \mathrm{M}_{2}\right)=\mathrm{nM}$
Therefore $\mathrm{M}^{2}=\mathrm{nM}$
Examples: Let

$$
M_{1}=\left(\begin{array}{ccc}
1 & -e_{n-2} & 1 \tag{1}\\
-e_{n-2}^{\top} & J_{n-2} & -e^{T_{n-2}} \\
1 & -e_{n-2} & 1
\end{array}\right)
$$

And

$$
M=\left(\begin{array}{lll}
1 & & 1 \tag{2}\\
& & \\
& &
\end{array}\right)
$$

be two generalized idempotent matrix of order n and 2 are respectively,
ie $\mathrm{M}^{2}{ }_{1}=\mathrm{n}_{1} \mathrm{M}_{1}$
\& $\quad \mathrm{M}_{2}{ }_{2}=2 \mathrm{M}_{2}$
Then we shall show that $M_{1} \times M_{2}$ is a generalized idempotent matrix with entries 1, -1 ie $\left(M_{1} \times M_{2}\right)^{2}=2 n\left(M_{1} \times M_{2}\right)$
We consider

$$
\begin{aligned}
M_{1} \times M_{2} & =\left(\begin{array}{ccc}
1 & -e_{n-2} & 1 \\
-e^{\top}{ }_{n-2} & J_{n-2} & -e^{\top}{ }_{n-2} \\
1 & -e_{n-2} & 1
\end{array}\right) \times\left(\begin{array}{lll}
1 & 1 \\
M_{2} & & -e_{n-2} M_{2} \\
-e_{n-2} M_{2} & J_{n-2} M_{2} & e^{T_{n-2} M_{2}} \\
M_{2} & -e_{n-2} M_{2} & M_{2}
\end{array}\right)
\end{aligned}
$$

We have

Theorem : 2

If an $n \times n$ matrix M with entries 1 and -1 satisfies $M^{2}=n M(1 \leq m \leq n)$ then the columns of matrix M are eigen vectors corresponding to eigen values of matrix M .

If the matrix M is of rank M then there are m repeated non zero eigen values of matrix M and other eigen value is zero.

Proof

Let $n \times n$ matrix M be

Where a's, b's and c's are 1and -1.

Let m be its eigen values of M, then $M^{2}=m M$
We Consider

Where

$$
\mathrm{MC}_{1}=\mathrm{mC}_{1}
$$

$$
\mathrm{MC}_{2}=\mathrm{mC}_{1}
$$

$\mathrm{MC}_{\mathrm{n}}=\mathrm{mC}_{1}$

Which shows that column $C_{1}, C_{2}-----C_{n}$ of matrix M are eigen values corresponding to eigen values of matrix M.
Remarks 1) If rank of $n x n$ matrix M with entries $1,-1$ is one, then there exist one non zero eigen value of matrix M and other (n $1)$ eigen values are zero. Then m has any integral value $b / w I$ and n.
2) If rank of $n x n$ matrix M with entries $1,-1$ is more than one, then there exist m repeated eigen value of matrix M according to the matrix M has m linearly independent columns or rows.

Example : 1 If an $n \times n$ matrix M with entries 1 and -1 has rank one and $M^{2}=n M(1 \leq m \leq n)$
Let

$$
M=\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right]=\left[\begin{array}{lll}
C_{1} & C_{2} & -\cdots-1--
\end{array}\right]
$$

be $4 x 4$ matrix satisfying $M^{2}=4 M$.
Rank of matrix M is one. Let λ be in eigen value. We consider $\mathrm{I} M-\lambda \mathrm{I}=0$
$\left|\begin{array}{cccc}1-\lambda & -1 & 1 & -1 \\ -1 & 1-\lambda & -1 & 1 \\ 1 & -1 & 1-\lambda & -1 \\ -1 & 1 & -1 & 1-\lambda\end{array}\right|=0$
$\square \lambda=0,0,0,4$
$\lambda_{1}=0, \quad \lambda_{2}=0, \quad \lambda_{3}=0, \lambda_{4}=4$ are eigen values of matrix M
We show that column of matrix M are eigen vectors corresponding to eigen values $\lambda=0,0,0,4$ of matrix M,
We take

$$
M_{C_{1}}=\left[\begin{array}{llll}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
& =4 \\
-1 \\
1 \\
-1 \\
-1 \\
-4
\end{array}\right]=4\left[\begin{array}{l}
1 \\
-4 \\
4 \\
-1 \\
-1 \\
-1
\end{array}\right]
$$

Which shows that column C_{1} of matrix C_{1} is an eigen vector corresponding to eigen value 4 of matrix M. Again,

$$
\begin{aligned}
& M C_{2}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{array}\right)=\left(\begin{array}{l}
-1 \\
1 \\
-4 \\
4 \\
1 \\
-4 \\
4
\end{array}\right) \\
& =4\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)=4 \mathrm{C}_{2}
\end{aligned}
$$

Which shows that column C_{2} of matrix is an eigen vector corresponding to eigen value 4 of matrix M
Similarly, columns C_{3} and C_{4} are eigen vectors corresponding to eigen value 4 of matrix M
Thus the column $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} of matrix M are eigen vector corresponding to eigen value 0 's of matrix M is obvious.

Example: 2 If the rank of matrix M is more than one. We suppose that $n x n$ matrix M with entries 1 and -1 has rank more than one and matrix M satisfies $M^{2}=n M, m<n$ then the column of matrix M are eigen vectors corresponding eigen values of matrix M

Let -
$M=\left[\begin{array}{cccc}1 & -1 & -1 & -1 \\ -1 & 1 & 1 & 1 \\ -1 & -1 & 1 & -1 \\ 1 & 1 & -1 & 1\end{array}\right]=\left[\begin{array}{lll}C_{1}, & C_{2} & \cdots-\cdots---C_{n}\end{array}\right]$
be 4×4 matrix with entries 1 and -1 and $C_{1}, C_{2} \quad \cdots-------C_{n}$ are in column. The rank of matrix M is 2 .
Let λ be eigen vector of matrix $M, I M-\lambda I=0$
$\left|\begin{array}{llll}1-\lambda & -1 & 1 & -1 \\ -1 & 1-\lambda & -1 & 1 \\ 1 & -1 & 1-\lambda & -1 \\ -1 & 1 & -1 & 1-\lambda\end{array}\right|=0$
$\Longleftrightarrow \lambda=2,2,0,0$
$\Longrightarrow \lambda_{1}=2, \quad \lambda_{2}=2, \quad \lambda_{3}=0, \quad \lambda_{4}=0 \quad$ are eigen values of matrix M. The rank of matrix M is 2 so there are two linearly independent columns or rows and rest two columns or rows linearly dependent. So we get two repeated eigen values 2, 2 and rest are 0,0 .

The column of 4×4 matrix M satisfying $M^{2}=2 M$ are eigen vectors corresponding to eigen value 2 's and 0 's of matrix M
(1) We consider,

$$
\mathrm{MC}_{1}=\left(\begin{array}{llll}
1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
-1 \\
-1 \\
1 \\
-1 \\
-1 \\
-2 \\
-2 \\
2
\end{array}\right]=\left(\begin{array}{l}
1 \\
2 \\
-1 \\
-1 \\
-1
\end{array}\right)
$$

$\mathrm{MC}_{1}=2 \mathrm{C}_{1}$
Which shows that column C_{1} of matrix M is eigen vector corresponding to eigen value 2 of matrix M Again, we consider

$$
\begin{aligned}
& \mathrm{M}_{2}=\left(\begin{array}{llll}
1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
-1 \\
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
-2 \\
2 \\
-2 \\
2
\end{array}\right) \\
& =2\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right)=2 C_{2}
\end{aligned}
$$

Which shows that columns C_{2} of matrix M is eigen vector corresponding to eigen value 2 of matrix M. Similarly column C_{3} and C_{4} are eigen values corresponding to eigen value 2 's of matrix M verification is that the column C_{1}, C_{2}, C_{3} and C_{4} of matrix M are eigen vectors corresponding to eigen value 0 's of matrix M is obvious. In construction of $n \times n$ matrix M satisfying $M^{2}=m M(1$ $\leq m \leq n)$ we find eigen vectors as the column of matrix M corresponding to its eigen value m.

Acknowledgment

We have not been given any financial support by any organization for this research project/paper publication.

Suggestion / Further scopes

Such type of generalized idempotent matrices' can be used as encryption coding theory and it has feature that the column of a generalized idempotent matrix are eigen vectors. So we can directly find eigen vector without any rigorous calculation. Also we can find a new generalized idempotent matrix by the Kroncker product of two other generalized idempotent matrices.

REFERENCES

Bakshi O.P. 2014. Sinha \& Narendra Pd, JUSPS-A Vol. 29(10), 418-426.
Brereton RG, 2016. Points vectors, linear independence \& some introductory linear algebra. J chemo metrics, 30 (7) 358 - 360.
Craigen, R. and Kharghani, H. : Orthogonal designs in Hand book of Combinatorial designs, second edition edited by J. Colbourn and J.H. Dinitz, Chapman and Hall/CR 2007
Jacobson, N. 1960. Basic Algebra II W H Freeman and company; San Francisco. 605.
Jacobson, N. 1980. Basic Algebra I W H Freeman and company; San Francisco 1980. 401-405
Khan, R M Algebra (Classical, Modern, Linear and Boolean) New central Agency, Kolkata 2011 pp 736 - 771.
Khan, S. 2016. Course - linear Algebra. http:// theopenacademy .com/ content / linear algebra - Khan - academy. Accused February9.
Liu, X., Wu, L., and Yu, Y. 2011. "The group inverse of the combinations of two idempotent matrices," Linear and Multilinear Algebra, vol. 59, no. 1, pp. 101-115, 2011. View at Publisher • View at Google Scholar •View at Zentralblatt MATH • View at MathSciNet
Prasad, L Matrices paramount publications, Patna 2009.
Style M.L.A. Association Scheme, Encyclopedia, Britannica, 2009.
Tayler Michacl Smith \& Robert A Vande Geijn, The University of Texas at Austin arX IV: 1702. 02017 Vl (cs.cc) 3, February 2017.

Tian, Y. 2011. "A disjoint idempotent decomposition for linear combinations produced from two commutative tripotent matrices and its applications," Linear and Multilinear Algebra, vol. 59, no. 11, pp. 1237-1246, View at Publisher • View at Google Scholar • View at Zentralblatt MATH • View at MathSciNet
Tze Menglow, Francisco D Igual, Tayler M Smith and Enrique S Quintana - orti. 2016. Analytical modeling in enough for high performances BLIS.ACH transaction on mathematical software, 43(2).
Zuo, K. 2010. "Nonsingularity of the difference and the sum of two idempotent matrices," Linear Algebra and Its Applications, vol. 433, no. 2, pp. 476-482, View at Publisher • View at Google Scholar • View at Zentralblatt MATH • View at MathSciNet

